Metamath Proof Explorer


Theorem metcnp4

Description: Two ways to say a mapping from metric C to metric D is continuous at point P . Theorem 14-4.3 of Gleason p. 240. (Contributed by NM, 17-May-2007) (Revised by Mario Carneiro, 4-May-2014)

Ref Expression
Hypotheses metcnp4.3
|- J = ( MetOpen ` C )
metcnp4.4
|- K = ( MetOpen ` D )
metcnp4.5
|- ( ph -> C e. ( *Met ` X ) )
metcnp4.6
|- ( ph -> D e. ( *Met ` Y ) )
metcnp4.7
|- ( ph -> P e. X )
Assertion metcnp4
|- ( ph -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) )

Proof

Step Hyp Ref Expression
1 metcnp4.3
 |-  J = ( MetOpen ` C )
2 metcnp4.4
 |-  K = ( MetOpen ` D )
3 metcnp4.5
 |-  ( ph -> C e. ( *Met ` X ) )
4 metcnp4.6
 |-  ( ph -> D e. ( *Met ` Y ) )
5 metcnp4.7
 |-  ( ph -> P e. X )
6 1 met1stc
 |-  ( C e. ( *Met ` X ) -> J e. 1stc )
7 3 6 syl
 |-  ( ph -> J e. 1stc )
8 1 mopntopon
 |-  ( C e. ( *Met ` X ) -> J e. ( TopOn ` X ) )
9 3 8 syl
 |-  ( ph -> J e. ( TopOn ` X ) )
10 2 mopntopon
 |-  ( D e. ( *Met ` Y ) -> K e. ( TopOn ` Y ) )
11 4 10 syl
 |-  ( ph -> K e. ( TopOn ` Y ) )
12 7 9 11 5 1stccnp
 |-  ( ph -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) )