| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1stccnp.1 |
|- ( ph -> J e. 1stc ) |
| 2 |
|
1stccnp.2 |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 3 |
|
1stccnp.3 |
|- ( ph -> K e. ( TopOn ` Y ) ) |
| 4 |
|
1stccnp.4 |
|- ( ph -> P e. X ) |
| 5 |
2 3
|
jca |
|- ( ph -> ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) ) |
| 6 |
|
cnpf2 |
|- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ F e. ( ( J CnP K ) ` P ) ) -> F : X --> Y ) |
| 7 |
6
|
3expa |
|- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) /\ F e. ( ( J CnP K ) ` P ) ) -> F : X --> Y ) |
| 8 |
5 7
|
sylan |
|- ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) -> F : X --> Y ) |
| 9 |
|
simprr |
|- ( ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) /\ ( f : NN --> X /\ f ( ~~>t ` J ) P ) ) -> f ( ~~>t ` J ) P ) |
| 10 |
|
simplr |
|- ( ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) /\ ( f : NN --> X /\ f ( ~~>t ` J ) P ) ) -> F e. ( ( J CnP K ) ` P ) ) |
| 11 |
9 10
|
lmcnp |
|- ( ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) /\ ( f : NN --> X /\ f ( ~~>t ` J ) P ) ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) |
| 12 |
11
|
ex |
|- ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) -> ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) |
| 13 |
12
|
alrimiv |
|- ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) -> A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) |
| 14 |
8 13
|
jca |
|- ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) -> ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) |
| 15 |
|
simprl |
|- ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> F : X --> Y ) |
| 16 |
|
fal |
|- -. F. |
| 17 |
|
19.29 |
|- ( ( A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> E. f ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) ) |
| 18 |
|
simprl |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> f : NN --> ( X \ ( `' F " u ) ) ) |
| 19 |
|
difss |
|- ( X \ ( `' F " u ) ) C_ X |
| 20 |
|
fss |
|- ( ( f : NN --> ( X \ ( `' F " u ) ) /\ ( X \ ( `' F " u ) ) C_ X ) -> f : NN --> X ) |
| 21 |
18 19 20
|
sylancl |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> f : NN --> X ) |
| 22 |
|
simprr |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> f ( ~~>t ` J ) P ) |
| 23 |
21 22
|
jca |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> ( f : NN --> X /\ f ( ~~>t ` J ) P ) ) |
| 24 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 25 |
|
simplrr |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> ( F ` P ) e. u ) |
| 26 |
|
1zzd |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> 1 e. ZZ ) |
| 27 |
|
simprr |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) |
| 28 |
|
simplrl |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> u e. K ) |
| 29 |
24 25 26 27 28
|
lmcvg |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F o. f ) ` k ) e. u ) |
| 30 |
24
|
r19.2uz |
|- ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F o. f ) ` k ) e. u -> E. k e. NN ( ( F o. f ) ` k ) e. u ) |
| 31 |
|
simprll |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> f : NN --> ( X \ ( `' F " u ) ) ) |
| 32 |
31
|
ffnd |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> f Fn NN ) |
| 33 |
|
fvco2 |
|- ( ( f Fn NN /\ k e. NN ) -> ( ( F o. f ) ` k ) = ( F ` ( f ` k ) ) ) |
| 34 |
32 33
|
sylan |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( F o. f ) ` k ) = ( F ` ( f ` k ) ) ) |
| 35 |
34
|
eleq1d |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( ( F o. f ) ` k ) e. u <-> ( F ` ( f ` k ) ) e. u ) ) |
| 36 |
31
|
ffvelcdmda |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( f ` k ) e. ( X \ ( `' F " u ) ) ) |
| 37 |
36
|
eldifad |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( f ` k ) e. X ) |
| 38 |
|
simplr |
|- ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> F : X --> Y ) |
| 39 |
38
|
ad2antrr |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> F : X --> Y ) |
| 40 |
|
ffn |
|- ( F : X --> Y -> F Fn X ) |
| 41 |
|
elpreima |
|- ( F Fn X -> ( ( f ` k ) e. ( `' F " u ) <-> ( ( f ` k ) e. X /\ ( F ` ( f ` k ) ) e. u ) ) ) |
| 42 |
39 40 41
|
3syl |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( f ` k ) e. ( `' F " u ) <-> ( ( f ` k ) e. X /\ ( F ` ( f ` k ) ) e. u ) ) ) |
| 43 |
36
|
eldifbd |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> -. ( f ` k ) e. ( `' F " u ) ) |
| 44 |
43
|
pm2.21d |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( f ` k ) e. ( `' F " u ) -> F. ) ) |
| 45 |
42 44
|
sylbird |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( ( f ` k ) e. X /\ ( F ` ( f ` k ) ) e. u ) -> F. ) ) |
| 46 |
37 45
|
mpand |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( F ` ( f ` k ) ) e. u -> F. ) ) |
| 47 |
35 46
|
sylbid |
|- ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( ( F o. f ) ` k ) e. u -> F. ) ) |
| 48 |
47
|
rexlimdva |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> ( E. k e. NN ( ( F o. f ) ` k ) e. u -> F. ) ) |
| 49 |
30 48
|
syl5 |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F o. f ) ` k ) e. u -> F. ) ) |
| 50 |
29 49
|
mpd |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> F. ) |
| 51 |
50
|
expr |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> ( ( F o. f ) ( ~~>t ` K ) ( F ` P ) -> F. ) ) |
| 52 |
23 51
|
embantd |
|- ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) -> F. ) ) |
| 53 |
52
|
ex |
|- ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) -> F. ) ) ) |
| 54 |
53
|
impcomd |
|- ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> F. ) ) |
| 55 |
54
|
exlimdv |
|- ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( E. f ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> F. ) ) |
| 56 |
17 55
|
syl5 |
|- ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( ( A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> F. ) ) |
| 57 |
56
|
exp4b |
|- ( ( ph /\ F : X --> Y ) -> ( ( u e. K /\ ( F ` P ) e. u ) -> ( A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) -> ( E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> F. ) ) ) ) |
| 58 |
57
|
com23 |
|- ( ( ph /\ F : X --> Y ) -> ( A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) -> ( ( u e. K /\ ( F ` P ) e. u ) -> ( E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> F. ) ) ) ) |
| 59 |
58
|
impr |
|- ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> ( ( u e. K /\ ( F ` P ) e. u ) -> ( E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> F. ) ) ) |
| 60 |
59
|
imp |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> F. ) ) |
| 61 |
16 60
|
mtoi |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> -. E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) |
| 62 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> J e. 1stc ) |
| 63 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> J e. ( TopOn ` X ) ) |
| 64 |
|
toponuni |
|- ( J e. ( TopOn ` X ) -> X = U. J ) |
| 65 |
63 64
|
syl |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> X = U. J ) |
| 66 |
19 65
|
sseqtrid |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( X \ ( `' F " u ) ) C_ U. J ) |
| 67 |
|
eqid |
|- U. J = U. J |
| 68 |
67
|
1stcelcls |
|- ( ( J e. 1stc /\ ( X \ ( `' F " u ) ) C_ U. J ) -> ( P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) <-> E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) ) |
| 69 |
62 66 68
|
syl2anc |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) <-> E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) ) |
| 70 |
61 69
|
mtbird |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> -. P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) ) |
| 71 |
|
topontop |
|- ( J e. ( TopOn ` X ) -> J e. Top ) |
| 72 |
63 71
|
syl |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> J e. Top ) |
| 73 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> P e. X ) |
| 74 |
73 65
|
eleqtrd |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> P e. U. J ) |
| 75 |
67
|
elcls |
|- ( ( J e. Top /\ ( X \ ( `' F " u ) ) C_ U. J /\ P e. U. J ) -> ( P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) <-> A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) |
| 76 |
72 66 74 75
|
syl3anc |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) <-> A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) |
| 77 |
70 76
|
mtbid |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> -. A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) |
| 78 |
15
|
ad2antrr |
|- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> F : X --> Y ) |
| 79 |
78
|
ffund |
|- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> Fun F ) |
| 80 |
|
toponss |
|- ( ( J e. ( TopOn ` X ) /\ v e. J ) -> v C_ X ) |
| 81 |
63 80
|
sylan |
|- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> v C_ X ) |
| 82 |
78
|
fdmd |
|- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> dom F = X ) |
| 83 |
81 82
|
sseqtrrd |
|- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> v C_ dom F ) |
| 84 |
|
funimass3 |
|- ( ( Fun F /\ v C_ dom F ) -> ( ( F " v ) C_ u <-> v C_ ( `' F " u ) ) ) |
| 85 |
79 83 84
|
syl2anc |
|- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( F " v ) C_ u <-> v C_ ( `' F " u ) ) ) |
| 86 |
|
dfss2 |
|- ( v C_ X <-> ( v i^i X ) = v ) |
| 87 |
81 86
|
sylib |
|- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( v i^i X ) = v ) |
| 88 |
87
|
sseq1d |
|- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( v i^i X ) C_ ( `' F " u ) <-> v C_ ( `' F " u ) ) ) |
| 89 |
85 88
|
bitr4d |
|- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( F " v ) C_ u <-> ( v i^i X ) C_ ( `' F " u ) ) ) |
| 90 |
|
nne |
|- ( -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) <-> ( v i^i ( X \ ( `' F " u ) ) ) = (/) ) |
| 91 |
|
inssdif0 |
|- ( ( v i^i X ) C_ ( `' F " u ) <-> ( v i^i ( X \ ( `' F " u ) ) ) = (/) ) |
| 92 |
90 91
|
bitr4i |
|- ( -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) <-> ( v i^i X ) C_ ( `' F " u ) ) |
| 93 |
89 92
|
bitr4di |
|- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( F " v ) C_ u <-> -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) |
| 94 |
93
|
anbi2d |
|- ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( P e. v /\ ( F " v ) C_ u ) <-> ( P e. v /\ -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) |
| 95 |
94
|
rexbidva |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( E. v e. J ( P e. v /\ ( F " v ) C_ u ) <-> E. v e. J ( P e. v /\ -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) |
| 96 |
|
rexanali |
|- ( E. v e. J ( P e. v /\ -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) <-> -. A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) |
| 97 |
95 96
|
bitrdi |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( E. v e. J ( P e. v /\ ( F " v ) C_ u ) <-> -. A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) |
| 98 |
77 97
|
mpbird |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) |
| 99 |
98
|
expr |
|- ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ u e. K ) -> ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) |
| 100 |
99
|
ralrimiva |
|- ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> A. u e. K ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) |
| 101 |
|
iscnp |
|- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ P e. X ) -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. u e. K ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) ) ) |
| 102 |
2 3 4 101
|
syl3anc |
|- ( ph -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. u e. K ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) ) ) |
| 103 |
102
|
adantr |
|- ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. u e. K ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) ) ) |
| 104 |
15 100 103
|
mpbir2and |
|- ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> F e. ( ( J CnP K ) ` P ) ) |
| 105 |
14 104
|
impbida |
|- ( ph -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) ) |