Metamath Proof Explorer


Theorem inssdif0

Description: Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996) (Proof shortened by Andrew Salmon, 26-Jun-2011) (Proof shortened by Wolf Lammen, 30-Sep-2014)

Ref Expression
Assertion inssdif0
|- ( ( A i^i B ) C_ C <-> ( A i^i ( B \ C ) ) = (/) )

Proof

Step Hyp Ref Expression
1 elin
 |-  ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) )
2 1 imbi1i
 |-  ( ( x e. ( A i^i B ) -> x e. C ) <-> ( ( x e. A /\ x e. B ) -> x e. C ) )
3 iman
 |-  ( ( ( x e. A /\ x e. B ) -> x e. C ) <-> -. ( ( x e. A /\ x e. B ) /\ -. x e. C ) )
4 2 3 bitri
 |-  ( ( x e. ( A i^i B ) -> x e. C ) <-> -. ( ( x e. A /\ x e. B ) /\ -. x e. C ) )
5 eldif
 |-  ( x e. ( B \ C ) <-> ( x e. B /\ -. x e. C ) )
6 5 anbi2i
 |-  ( ( x e. A /\ x e. ( B \ C ) ) <-> ( x e. A /\ ( x e. B /\ -. x e. C ) ) )
7 elin
 |-  ( x e. ( A i^i ( B \ C ) ) <-> ( x e. A /\ x e. ( B \ C ) ) )
8 anass
 |-  ( ( ( x e. A /\ x e. B ) /\ -. x e. C ) <-> ( x e. A /\ ( x e. B /\ -. x e. C ) ) )
9 6 7 8 3bitr4ri
 |-  ( ( ( x e. A /\ x e. B ) /\ -. x e. C ) <-> x e. ( A i^i ( B \ C ) ) )
10 4 9 xchbinx
 |-  ( ( x e. ( A i^i B ) -> x e. C ) <-> -. x e. ( A i^i ( B \ C ) ) )
11 10 albii
 |-  ( A. x ( x e. ( A i^i B ) -> x e. C ) <-> A. x -. x e. ( A i^i ( B \ C ) ) )
12 dfss2
 |-  ( ( A i^i B ) C_ C <-> A. x ( x e. ( A i^i B ) -> x e. C ) )
13 eq0
 |-  ( ( A i^i ( B \ C ) ) = (/) <-> A. x -. x e. ( A i^i ( B \ C ) ) )
14 11 12 13 3bitr4i
 |-  ( ( A i^i B ) C_ C <-> ( A i^i ( B \ C ) ) = (/) )