| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1stcelcls.1 |
|- X = U. J |
| 2 |
|
simpll |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> J e. 1stc ) |
| 3 |
|
1stctop |
|- ( J e. 1stc -> J e. Top ) |
| 4 |
1
|
clsss3 |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 5 |
3 4
|
sylan |
|- ( ( J e. 1stc /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 6 |
5
|
sselda |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> P e. X ) |
| 7 |
1
|
1stcfb |
|- ( ( J e. 1stc /\ P e. X ) -> E. g ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) |
| 8 |
2 6 7
|
syl2anc |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> E. g ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) |
| 9 |
|
simpr2 |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) ) |
| 10 |
|
simpl |
|- ( ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) -> P e. ( g ` k ) ) |
| 11 |
10
|
ralimi |
|- ( A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) -> A. k e. NN P e. ( g ` k ) ) |
| 12 |
9 11
|
syl |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> A. k e. NN P e. ( g ` k ) ) |
| 13 |
|
fveq2 |
|- ( k = n -> ( g ` k ) = ( g ` n ) ) |
| 14 |
13
|
eleq2d |
|- ( k = n -> ( P e. ( g ` k ) <-> P e. ( g ` n ) ) ) |
| 15 |
14
|
rspccva |
|- ( ( A. k e. NN P e. ( g ` k ) /\ n e. NN ) -> P e. ( g ` n ) ) |
| 16 |
12 15
|
sylan |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> P e. ( g ` n ) ) |
| 17 |
|
eleq2 |
|- ( y = ( g ` n ) -> ( P e. y <-> P e. ( g ` n ) ) ) |
| 18 |
|
ineq1 |
|- ( y = ( g ` n ) -> ( y i^i S ) = ( ( g ` n ) i^i S ) ) |
| 19 |
18
|
neeq1d |
|- ( y = ( g ` n ) -> ( ( y i^i S ) =/= (/) <-> ( ( g ` n ) i^i S ) =/= (/) ) ) |
| 20 |
17 19
|
imbi12d |
|- ( y = ( g ` n ) -> ( ( P e. y -> ( y i^i S ) =/= (/) ) <-> ( P e. ( g ` n ) -> ( ( g ` n ) i^i S ) =/= (/) ) ) ) |
| 21 |
1
|
elcls2 |
|- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) <-> ( P e. X /\ A. y e. J ( P e. y -> ( y i^i S ) =/= (/) ) ) ) ) |
| 22 |
3 21
|
sylan |
|- ( ( J e. 1stc /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) <-> ( P e. X /\ A. y e. J ( P e. y -> ( y i^i S ) =/= (/) ) ) ) ) |
| 23 |
22
|
simplbda |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> A. y e. J ( P e. y -> ( y i^i S ) =/= (/) ) ) |
| 24 |
23
|
ad2antrr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> A. y e. J ( P e. y -> ( y i^i S ) =/= (/) ) ) |
| 25 |
|
simpr1 |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> g : NN --> J ) |
| 26 |
25
|
ffvelcdmda |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> ( g ` n ) e. J ) |
| 27 |
20 24 26
|
rspcdva |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> ( P e. ( g ` n ) -> ( ( g ` n ) i^i S ) =/= (/) ) ) |
| 28 |
16 27
|
mpd |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> ( ( g ` n ) i^i S ) =/= (/) ) |
| 29 |
|
elin |
|- ( x e. ( ( g ` n ) i^i S ) <-> ( x e. ( g ` n ) /\ x e. S ) ) |
| 30 |
29
|
biancomi |
|- ( x e. ( ( g ` n ) i^i S ) <-> ( x e. S /\ x e. ( g ` n ) ) ) |
| 31 |
30
|
exbii |
|- ( E. x x e. ( ( g ` n ) i^i S ) <-> E. x ( x e. S /\ x e. ( g ` n ) ) ) |
| 32 |
|
n0 |
|- ( ( ( g ` n ) i^i S ) =/= (/) <-> E. x x e. ( ( g ` n ) i^i S ) ) |
| 33 |
|
df-rex |
|- ( E. x e. S x e. ( g ` n ) <-> E. x ( x e. S /\ x e. ( g ` n ) ) ) |
| 34 |
31 32 33
|
3bitr4i |
|- ( ( ( g ` n ) i^i S ) =/= (/) <-> E. x e. S x e. ( g ` n ) ) |
| 35 |
28 34
|
sylib |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> E. x e. S x e. ( g ` n ) ) |
| 36 |
3
|
ad2antrr |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> J e. Top ) |
| 37 |
1
|
topopn |
|- ( J e. Top -> X e. J ) |
| 38 |
36 37
|
syl |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> X e. J ) |
| 39 |
|
simplr |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> S C_ X ) |
| 40 |
38 39
|
ssexd |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> S e. _V ) |
| 41 |
|
fvi |
|- ( S e. _V -> ( _I ` S ) = S ) |
| 42 |
40 41
|
syl |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> ( _I ` S ) = S ) |
| 43 |
42
|
ad2antrr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> ( _I ` S ) = S ) |
| 44 |
35 43
|
rexeqtrrdv |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> E. x e. ( _I ` S ) x e. ( g ` n ) ) |
| 45 |
44
|
ralrimiva |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> A. n e. NN E. x e. ( _I ` S ) x e. ( g ` n ) ) |
| 46 |
|
fvex |
|- ( _I ` S ) e. _V |
| 47 |
|
nnenom |
|- NN ~~ _om |
| 48 |
|
eleq1 |
|- ( x = ( f ` n ) -> ( x e. ( g ` n ) <-> ( f ` n ) e. ( g ` n ) ) ) |
| 49 |
46 47 48
|
axcc4 |
|- ( A. n e. NN E. x e. ( _I ` S ) x e. ( g ` n ) -> E. f ( f : NN --> ( _I ` S ) /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) |
| 50 |
45 49
|
syl |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> E. f ( f : NN --> ( _I ` S ) /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) |
| 51 |
42
|
feq3d |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> ( f : NN --> ( _I ` S ) <-> f : NN --> S ) ) |
| 52 |
51
|
biimpd |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> ( f : NN --> ( _I ` S ) -> f : NN --> S ) ) |
| 53 |
52
|
adantr |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> ( f : NN --> ( _I ` S ) -> f : NN --> S ) ) |
| 54 |
6
|
ad2antrr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> P e. X ) |
| 55 |
|
simplr3 |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) |
| 56 |
|
eleq2 |
|- ( x = y -> ( P e. x <-> P e. y ) ) |
| 57 |
|
fveq2 |
|- ( k = j -> ( g ` k ) = ( g ` j ) ) |
| 58 |
57
|
sseq1d |
|- ( k = j -> ( ( g ` k ) C_ x <-> ( g ` j ) C_ x ) ) |
| 59 |
58
|
cbvrexvw |
|- ( E. k e. NN ( g ` k ) C_ x <-> E. j e. NN ( g ` j ) C_ x ) |
| 60 |
|
sseq2 |
|- ( x = y -> ( ( g ` j ) C_ x <-> ( g ` j ) C_ y ) ) |
| 61 |
60
|
rexbidv |
|- ( x = y -> ( E. j e. NN ( g ` j ) C_ x <-> E. j e. NN ( g ` j ) C_ y ) ) |
| 62 |
59 61
|
bitrid |
|- ( x = y -> ( E. k e. NN ( g ` k ) C_ x <-> E. j e. NN ( g ` j ) C_ y ) ) |
| 63 |
56 62
|
imbi12d |
|- ( x = y -> ( ( P e. x -> E. k e. NN ( g ` k ) C_ x ) <-> ( P e. y -> E. j e. NN ( g ` j ) C_ y ) ) ) |
| 64 |
63
|
rspccva |
|- ( ( A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) /\ y e. J ) -> ( P e. y -> E. j e. NN ( g ` j ) C_ y ) ) |
| 65 |
55 64
|
sylan |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) /\ y e. J ) -> ( P e. y -> E. j e. NN ( g ` j ) C_ y ) ) |
| 66 |
|
simpr |
|- ( ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) -> ( g ` ( k + 1 ) ) C_ ( g ` k ) ) |
| 67 |
66
|
ralimi |
|- ( A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) -> A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) ) |
| 68 |
9 67
|
syl |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) ) |
| 69 |
68
|
adantr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) -> A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) ) |
| 70 |
|
simprrr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) -> j e. NN ) |
| 71 |
|
fveq2 |
|- ( n = j -> ( g ` n ) = ( g ` j ) ) |
| 72 |
71
|
sseq1d |
|- ( n = j -> ( ( g ` n ) C_ ( g ` j ) <-> ( g ` j ) C_ ( g ` j ) ) ) |
| 73 |
72
|
imbi2d |
|- ( n = j -> ( ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` n ) C_ ( g ` j ) ) <-> ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` j ) C_ ( g ` j ) ) ) ) |
| 74 |
|
fveq2 |
|- ( n = m -> ( g ` n ) = ( g ` m ) ) |
| 75 |
74
|
sseq1d |
|- ( n = m -> ( ( g ` n ) C_ ( g ` j ) <-> ( g ` m ) C_ ( g ` j ) ) ) |
| 76 |
75
|
imbi2d |
|- ( n = m -> ( ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` n ) C_ ( g ` j ) ) <-> ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` m ) C_ ( g ` j ) ) ) ) |
| 77 |
|
fveq2 |
|- ( n = ( m + 1 ) -> ( g ` n ) = ( g ` ( m + 1 ) ) ) |
| 78 |
77
|
sseq1d |
|- ( n = ( m + 1 ) -> ( ( g ` n ) C_ ( g ` j ) <-> ( g ` ( m + 1 ) ) C_ ( g ` j ) ) ) |
| 79 |
78
|
imbi2d |
|- ( n = ( m + 1 ) -> ( ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` n ) C_ ( g ` j ) ) <-> ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` ( m + 1 ) ) C_ ( g ` j ) ) ) ) |
| 80 |
|
ssid |
|- ( g ` j ) C_ ( g ` j ) |
| 81 |
80
|
2a1i |
|- ( j e. ZZ -> ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` j ) C_ ( g ` j ) ) ) |
| 82 |
|
eluznn |
|- ( ( j e. NN /\ m e. ( ZZ>= ` j ) ) -> m e. NN ) |
| 83 |
|
fvoveq1 |
|- ( k = m -> ( g ` ( k + 1 ) ) = ( g ` ( m + 1 ) ) ) |
| 84 |
|
fveq2 |
|- ( k = m -> ( g ` k ) = ( g ` m ) ) |
| 85 |
83 84
|
sseq12d |
|- ( k = m -> ( ( g ` ( k + 1 ) ) C_ ( g ` k ) <-> ( g ` ( m + 1 ) ) C_ ( g ` m ) ) ) |
| 86 |
85
|
rspccva |
|- ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ m e. NN ) -> ( g ` ( m + 1 ) ) C_ ( g ` m ) ) |
| 87 |
82 86
|
sylan2 |
|- ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ ( j e. NN /\ m e. ( ZZ>= ` j ) ) ) -> ( g ` ( m + 1 ) ) C_ ( g ` m ) ) |
| 88 |
87
|
anassrs |
|- ( ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) /\ m e. ( ZZ>= ` j ) ) -> ( g ` ( m + 1 ) ) C_ ( g ` m ) ) |
| 89 |
|
sstr2 |
|- ( ( g ` ( m + 1 ) ) C_ ( g ` m ) -> ( ( g ` m ) C_ ( g ` j ) -> ( g ` ( m + 1 ) ) C_ ( g ` j ) ) ) |
| 90 |
88 89
|
syl |
|- ( ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) /\ m e. ( ZZ>= ` j ) ) -> ( ( g ` m ) C_ ( g ` j ) -> ( g ` ( m + 1 ) ) C_ ( g ` j ) ) ) |
| 91 |
90
|
expcom |
|- ( m e. ( ZZ>= ` j ) -> ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( ( g ` m ) C_ ( g ` j ) -> ( g ` ( m + 1 ) ) C_ ( g ` j ) ) ) ) |
| 92 |
91
|
a2d |
|- ( m e. ( ZZ>= ` j ) -> ( ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` m ) C_ ( g ` j ) ) -> ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` ( m + 1 ) ) C_ ( g ` j ) ) ) ) |
| 93 |
73 76 79 76 81 92
|
uzind4 |
|- ( m e. ( ZZ>= ` j ) -> ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` m ) C_ ( g ` j ) ) ) |
| 94 |
93
|
com12 |
|- ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( m e. ( ZZ>= ` j ) -> ( g ` m ) C_ ( g ` j ) ) ) |
| 95 |
94
|
ralrimiv |
|- ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> A. m e. ( ZZ>= ` j ) ( g ` m ) C_ ( g ` j ) ) |
| 96 |
69 70 95
|
syl2anc |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) -> A. m e. ( ZZ>= ` j ) ( g ` m ) C_ ( g ` j ) ) |
| 97 |
|
fveq2 |
|- ( n = m -> ( f ` n ) = ( f ` m ) ) |
| 98 |
97 74
|
eleq12d |
|- ( n = m -> ( ( f ` n ) e. ( g ` n ) <-> ( f ` m ) e. ( g ` m ) ) ) |
| 99 |
|
simplr |
|- ( ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) -> A. n e. NN ( f ` n ) e. ( g ` n ) ) |
| 100 |
99
|
ad2antlr |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) /\ m e. ( ZZ>= ` j ) ) -> A. n e. NN ( f ` n ) e. ( g ` n ) ) |
| 101 |
70 82
|
sylan |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) /\ m e. ( ZZ>= ` j ) ) -> m e. NN ) |
| 102 |
98 100 101
|
rspcdva |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) /\ m e. ( ZZ>= ` j ) ) -> ( f ` m ) e. ( g ` m ) ) |
| 103 |
102
|
ralrimiva |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) -> A. m e. ( ZZ>= ` j ) ( f ` m ) e. ( g ` m ) ) |
| 104 |
|
r19.26 |
|- ( A. m e. ( ZZ>= ` j ) ( ( g ` m ) C_ ( g ` j ) /\ ( f ` m ) e. ( g ` m ) ) <-> ( A. m e. ( ZZ>= ` j ) ( g ` m ) C_ ( g ` j ) /\ A. m e. ( ZZ>= ` j ) ( f ` m ) e. ( g ` m ) ) ) |
| 105 |
96 103 104
|
sylanbrc |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) -> A. m e. ( ZZ>= ` j ) ( ( g ` m ) C_ ( g ` j ) /\ ( f ` m ) e. ( g ` m ) ) ) |
| 106 |
|
ssel2 |
|- ( ( ( g ` m ) C_ ( g ` j ) /\ ( f ` m ) e. ( g ` m ) ) -> ( f ` m ) e. ( g ` j ) ) |
| 107 |
106
|
ralimi |
|- ( A. m e. ( ZZ>= ` j ) ( ( g ` m ) C_ ( g ` j ) /\ ( f ` m ) e. ( g ` m ) ) -> A. m e. ( ZZ>= ` j ) ( f ` m ) e. ( g ` j ) ) |
| 108 |
105 107
|
syl |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) -> A. m e. ( ZZ>= ` j ) ( f ` m ) e. ( g ` j ) ) |
| 109 |
|
ssel |
|- ( ( g ` j ) C_ y -> ( ( f ` m ) e. ( g ` j ) -> ( f ` m ) e. y ) ) |
| 110 |
109
|
ralimdv |
|- ( ( g ` j ) C_ y -> ( A. m e. ( ZZ>= ` j ) ( f ` m ) e. ( g ` j ) -> A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) |
| 111 |
108 110
|
syl5com |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) -> ( ( g ` j ) C_ y -> A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) |
| 112 |
111
|
anassrs |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) /\ ( y e. J /\ j e. NN ) ) -> ( ( g ` j ) C_ y -> A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) |
| 113 |
112
|
anassrs |
|- ( ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) /\ y e. J ) /\ j e. NN ) -> ( ( g ` j ) C_ y -> A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) |
| 114 |
113
|
reximdva |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) /\ y e. J ) -> ( E. j e. NN ( g ` j ) C_ y -> E. j e. NN A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) |
| 115 |
65 114
|
syld |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) /\ y e. J ) -> ( P e. y -> E. j e. NN A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) |
| 116 |
115
|
ralrimiva |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> A. y e. J ( P e. y -> E. j e. NN A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) |
| 117 |
36
|
ad2antrr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> J e. Top ) |
| 118 |
1
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 119 |
117 118
|
sylib |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> J e. ( TopOn ` X ) ) |
| 120 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 121 |
|
1zzd |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> 1 e. ZZ ) |
| 122 |
|
simprl |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> f : NN --> S ) |
| 123 |
39
|
ad2antrr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> S C_ X ) |
| 124 |
122 123
|
fssd |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> f : NN --> X ) |
| 125 |
|
eqidd |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) /\ m e. NN ) -> ( f ` m ) = ( f ` m ) ) |
| 126 |
119 120 121 124 125
|
lmbrf |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> ( f ( ~~>t ` J ) P <-> ( P e. X /\ A. y e. J ( P e. y -> E. j e. NN A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) ) ) |
| 127 |
54 116 126
|
mpbir2and |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> f ( ~~>t ` J ) P ) |
| 128 |
127
|
expr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ f : NN --> S ) -> ( A. n e. NN ( f ` n ) e. ( g ` n ) -> f ( ~~>t ` J ) P ) ) |
| 129 |
128
|
imdistanda |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) -> ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) ) |
| 130 |
53 129
|
syland |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> ( ( f : NN --> ( _I ` S ) /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) -> ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) ) |
| 131 |
130
|
eximdv |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> ( E. f ( f : NN --> ( _I ` S ) /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) -> E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) ) |
| 132 |
50 131
|
mpd |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) |
| 133 |
8 132
|
exlimddv |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) |
| 134 |
133
|
ex |
|- ( ( J e. 1stc /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) -> E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) ) |
| 135 |
3
|
ad2antrr |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) -> J e. Top ) |
| 136 |
135 118
|
sylib |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) -> J e. ( TopOn ` X ) ) |
| 137 |
|
1zzd |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) -> 1 e. ZZ ) |
| 138 |
|
simprr |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) -> f ( ~~>t ` J ) P ) |
| 139 |
|
simprl |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) -> f : NN --> S ) |
| 140 |
139
|
ffvelcdmda |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) /\ k e. NN ) -> ( f ` k ) e. S ) |
| 141 |
|
simplr |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) -> S C_ X ) |
| 142 |
120 136 137 138 140 141
|
lmcls |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) -> P e. ( ( cls ` J ) ` S ) ) |
| 143 |
142
|
ex |
|- ( ( J e. 1stc /\ S C_ X ) -> ( ( f : NN --> S /\ f ( ~~>t ` J ) P ) -> P e. ( ( cls ` J ) ` S ) ) ) |
| 144 |
143
|
exlimdv |
|- ( ( J e. 1stc /\ S C_ X ) -> ( E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) -> P e. ( ( cls ` J ) ` S ) ) ) |
| 145 |
134 144
|
impbid |
|- ( ( J e. 1stc /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) <-> E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) ) |