| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1stcelcls.1 |
|
| 2 |
|
simpll |
|
| 3 |
|
1stctop |
|
| 4 |
1
|
clsss3 |
|
| 5 |
3 4
|
sylan |
|
| 6 |
5
|
sselda |
|
| 7 |
1
|
1stcfb |
|
| 8 |
2 6 7
|
syl2anc |
|
| 9 |
|
simpr2 |
|
| 10 |
|
simpl |
|
| 11 |
10
|
ralimi |
|
| 12 |
9 11
|
syl |
|
| 13 |
|
fveq2 |
|
| 14 |
13
|
eleq2d |
|
| 15 |
14
|
rspccva |
|
| 16 |
12 15
|
sylan |
|
| 17 |
|
eleq2 |
|
| 18 |
|
ineq1 |
|
| 19 |
18
|
neeq1d |
|
| 20 |
17 19
|
imbi12d |
|
| 21 |
1
|
elcls2 |
|
| 22 |
3 21
|
sylan |
|
| 23 |
22
|
simplbda |
|
| 24 |
23
|
ad2antrr |
|
| 25 |
|
simpr1 |
|
| 26 |
25
|
ffvelcdmda |
|
| 27 |
20 24 26
|
rspcdva |
|
| 28 |
16 27
|
mpd |
|
| 29 |
|
elin |
|
| 30 |
29
|
biancomi |
|
| 31 |
30
|
exbii |
|
| 32 |
|
n0 |
|
| 33 |
|
df-rex |
|
| 34 |
31 32 33
|
3bitr4i |
|
| 35 |
28 34
|
sylib |
|
| 36 |
3
|
ad2antrr |
|
| 37 |
1
|
topopn |
|
| 38 |
36 37
|
syl |
|
| 39 |
|
simplr |
|
| 40 |
38 39
|
ssexd |
|
| 41 |
|
fvi |
|
| 42 |
40 41
|
syl |
|
| 43 |
42
|
ad2antrr |
|
| 44 |
35 43
|
rexeqtrrdv |
|
| 45 |
44
|
ralrimiva |
|
| 46 |
|
fvex |
|
| 47 |
|
nnenom |
|
| 48 |
|
eleq1 |
|
| 49 |
46 47 48
|
axcc4 |
|
| 50 |
45 49
|
syl |
|
| 51 |
42
|
feq3d |
|
| 52 |
51
|
biimpd |
|
| 53 |
52
|
adantr |
|
| 54 |
6
|
ad2antrr |
|
| 55 |
|
simplr3 |
|
| 56 |
|
eleq2 |
|
| 57 |
|
fveq2 |
|
| 58 |
57
|
sseq1d |
|
| 59 |
58
|
cbvrexvw |
|
| 60 |
|
sseq2 |
|
| 61 |
60
|
rexbidv |
|
| 62 |
59 61
|
bitrid |
|
| 63 |
56 62
|
imbi12d |
|
| 64 |
63
|
rspccva |
|
| 65 |
55 64
|
sylan |
|
| 66 |
|
simpr |
|
| 67 |
66
|
ralimi |
|
| 68 |
9 67
|
syl |
|
| 69 |
68
|
adantr |
|
| 70 |
|
simprrr |
|
| 71 |
|
fveq2 |
|
| 72 |
71
|
sseq1d |
|
| 73 |
72
|
imbi2d |
|
| 74 |
|
fveq2 |
|
| 75 |
74
|
sseq1d |
|
| 76 |
75
|
imbi2d |
|
| 77 |
|
fveq2 |
|
| 78 |
77
|
sseq1d |
|
| 79 |
78
|
imbi2d |
|
| 80 |
|
ssid |
|
| 81 |
80
|
2a1i |
|
| 82 |
|
eluznn |
|
| 83 |
|
fvoveq1 |
|
| 84 |
|
fveq2 |
|
| 85 |
83 84
|
sseq12d |
|
| 86 |
85
|
rspccva |
|
| 87 |
82 86
|
sylan2 |
|
| 88 |
87
|
anassrs |
|
| 89 |
|
sstr2 |
|
| 90 |
88 89
|
syl |
|
| 91 |
90
|
expcom |
|
| 92 |
91
|
a2d |
|
| 93 |
73 76 79 76 81 92
|
uzind4 |
|
| 94 |
93
|
com12 |
|
| 95 |
94
|
ralrimiv |
|
| 96 |
69 70 95
|
syl2anc |
|
| 97 |
|
fveq2 |
|
| 98 |
97 74
|
eleq12d |
|
| 99 |
|
simplr |
|
| 100 |
99
|
ad2antlr |
|
| 101 |
70 82
|
sylan |
|
| 102 |
98 100 101
|
rspcdva |
|
| 103 |
102
|
ralrimiva |
|
| 104 |
|
r19.26 |
|
| 105 |
96 103 104
|
sylanbrc |
|
| 106 |
|
ssel2 |
|
| 107 |
106
|
ralimi |
|
| 108 |
105 107
|
syl |
|
| 109 |
|
ssel |
|
| 110 |
109
|
ralimdv |
|
| 111 |
108 110
|
syl5com |
|
| 112 |
111
|
anassrs |
|
| 113 |
112
|
anassrs |
|
| 114 |
113
|
reximdva |
|
| 115 |
65 114
|
syld |
|
| 116 |
115
|
ralrimiva |
|
| 117 |
36
|
ad2antrr |
|
| 118 |
1
|
toptopon |
|
| 119 |
117 118
|
sylib |
|
| 120 |
|
nnuz |
|
| 121 |
|
1zzd |
|
| 122 |
|
simprl |
|
| 123 |
39
|
ad2antrr |
|
| 124 |
122 123
|
fssd |
|
| 125 |
|
eqidd |
|
| 126 |
119 120 121 124 125
|
lmbrf |
|
| 127 |
54 116 126
|
mpbir2and |
|
| 128 |
127
|
expr |
|
| 129 |
128
|
imdistanda |
|
| 130 |
53 129
|
syland |
|
| 131 |
130
|
eximdv |
|
| 132 |
50 131
|
mpd |
|
| 133 |
8 132
|
exlimddv |
|
| 134 |
133
|
ex |
|
| 135 |
3
|
ad2antrr |
|
| 136 |
135 118
|
sylib |
|
| 137 |
|
1zzd |
|
| 138 |
|
simprr |
|
| 139 |
|
simprl |
|
| 140 |
139
|
ffvelcdmda |
|
| 141 |
|
simplr |
|
| 142 |
120 136 137 138 140 141
|
lmcls |
|
| 143 |
142
|
ex |
|
| 144 |
143
|
exlimdv |
|
| 145 |
134 144
|
impbid |
|