Metamath Proof Explorer


Theorem 1stcfb

Description: For any point A in a first-countable topology, there is a function f : NN --> J enumerating neighborhoods of A which is decreasing and forms a local base. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis 1stcclb.1 X = J
Assertion 1stcfb J 1 st 𝜔 A X f f : J k A f k f k + 1 f k y J A y k f k y

Proof

Step Hyp Ref Expression
1 1stcclb.1 X = J
2 1 1stcclb J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z
3 simplr J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z A X
4 eleq2 z = X A z A X
5 sseq2 z = X w z w X
6 5 anbi2d z = X A w w z A w w X
7 6 rexbidv z = X w x A w w z w x A w w X
8 4 7 imbi12d z = X A z w x A w w z A X w x A w w X
9 simprrr J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z z J A z w x A w w z
10 1stctop J 1 st 𝜔 J Top
11 10 ad2antrr J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z J Top
12 1 topopn J Top X J
13 11 12 syl J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z X J
14 8 9 13 rspcdva J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z A X w x A w w X
15 3 14 mpd J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z w x A w w X
16 simpl A w w X A w
17 16 reximi w x A w w X w x A w
18 15 17 syl J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z w x A w
19 eleq2w w = a A w A a
20 19 cbvrexvw w x A w a x A a
21 18 20 sylib J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z a x A a
22 rabn0 a x | A a a x A a
23 21 22 sylibr J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z a x | A a
24 vex x V
25 24 rabex a x | A a V
26 25 0sdom a x | A a a x | A a
27 23 26 sylibr J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z a x | A a
28 ssrab2 a x | A a x
29 ssdomg x V a x | A a x a x | A a x
30 24 28 29 mp2 a x | A a x
31 simprrl J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z x ω
32 nnenom ω
33 32 ensymi ω
34 domentr x ω ω x
35 31 33 34 sylancl J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z x
36 domtr a x | A a x x a x | A a
37 30 35 36 sylancr J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z a x | A a
38 fodomr a x | A a a x | A a g g : onto a x | A a
39 27 37 38 syl2anc J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z g g : onto a x | A a
40 10 ad3antrrr J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n J Top
41 imassrn g 1 n ran g
42 forn g : onto a x | A a ran g = a x | A a
43 42 ad2antll J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a ran g = a x | A a
44 simprll J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a x 𝒫 J
45 44 elpwid J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a x J
46 28 45 sstrid J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a a x | A a J
47 43 46 eqsstrd J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a ran g J
48 47 adantr J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n ran g J
49 41 48 sstrid J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n g 1 n J
50 fz1ssnn 1 n
51 fof g : onto a x | A a g : a x | A a
52 51 ad2antll J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a g : a x | A a
53 52 fdmd J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a dom g =
54 50 53 sseqtrrid J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a 1 n dom g
55 54 adantr J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n 1 n dom g
56 sseqin2 1 n dom g dom g 1 n = 1 n
57 55 56 sylib J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n dom g 1 n = 1 n
58 elfz1end n n 1 n
59 ne0i n 1 n 1 n
60 59 adantl J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n 1 n 1 n
61 58 60 sylan2b J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n 1 n
62 57 61 eqnetrd J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n dom g 1 n
63 imadisj g 1 n = dom g 1 n =
64 63 necon3bii g 1 n dom g 1 n
65 62 64 sylibr J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n g 1 n
66 fzfid J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n 1 n Fin
67 52 ffund J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a Fun g
68 fores Fun g 1 n dom g g 1 n : 1 n onto g 1 n
69 67 55 68 syl2an2r J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n g 1 n : 1 n onto g 1 n
70 fofi 1 n Fin g 1 n : 1 n onto g 1 n g 1 n Fin
71 66 69 70 syl2anc J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n g 1 n Fin
72 fiinopn J Top g 1 n J g 1 n g 1 n Fin g 1 n J
73 72 imp J Top g 1 n J g 1 n g 1 n Fin g 1 n J
74 40 49 65 71 73 syl13anc J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n g 1 n J
75 74 fmpttd J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n g 1 n : J
76 imassrn g 1 k ran g
77 43 adantr J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k ran g = a x | A a
78 76 77 sseqtrid J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k g 1 k a x | A a
79 id A n A n
80 79 rgenw n x A n A n
81 eleq2w a = n A a A n
82 81 ralrab n a x | A a A n n x A n A n
83 80 82 mpbir n a x | A a A n
84 ssralv g 1 k a x | A a n a x | A a A n n g 1 k A n
85 78 83 84 mpisyl J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k n g 1 k A n
86 elintg A X A g 1 k n g 1 k A n
87 86 ad3antlr J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k A g 1 k n g 1 k A n
88 85 87 mpbird J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k A g 1 k
89 eqid n g 1 n = n g 1 n
90 oveq2 n = k 1 n = 1 k
91 90 imaeq2d n = k g 1 n = g 1 k
92 91 inteqd n = k g 1 n = g 1 k
93 simpr J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k k
94 74 ralrimiva J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a n g 1 n J
95 92 eleq1d n = k g 1 n J g 1 k J
96 95 rspccva n g 1 n J k g 1 k J
97 94 96 sylan J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k g 1 k J
98 89 92 93 97 fvmptd3 J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k n g 1 n k = g 1 k
99 88 98 eleqtrrd J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k A n g 1 n k
100 fzssp1 1 k 1 k + 1
101 imass2 1 k 1 k + 1 g 1 k g 1 k + 1
102 100 101 mp1i J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k g 1 k g 1 k + 1
103 intss g 1 k g 1 k + 1 g 1 k + 1 g 1 k
104 102 103 syl J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k g 1 k + 1 g 1 k
105 oveq2 n = k + 1 1 n = 1 k + 1
106 105 imaeq2d n = k + 1 g 1 n = g 1 k + 1
107 106 inteqd n = k + 1 g 1 n = g 1 k + 1
108 peano2nn k k + 1
109 108 adantl J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k k + 1
110 107 eleq1d n = k + 1 g 1 n J g 1 k + 1 J
111 110 rspccva n g 1 n J k + 1 g 1 k + 1 J
112 94 108 111 syl2an J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k g 1 k + 1 J
113 89 107 109 112 fvmptd3 J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k n g 1 n k + 1 = g 1 k + 1
114 104 113 98 3sstr4d J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k n g 1 n k + 1 n g 1 n k
115 99 114 jca J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k A n g 1 n k n g 1 n k + 1 n g 1 n k
116 115 ralrimiva J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k A n g 1 n k n g 1 n k + 1 n g 1 n k
117 simprlr J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a z J A z w x A w w z
118 eleq2w z = y A z A y
119 sseq2 z = y w z w y
120 119 anbi2d z = y A w w z A w w y
121 120 rexbidv z = y w x A w w z w x A w w y
122 118 121 imbi12d z = y A z w x A w w z A y w x A w w y
123 122 rspccva z J A z w x A w w z y J A y w x A w w y
124 117 123 sylan J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J A y w x A w w y
125 eleq2w a = w A a A w
126 125 rexrab w a x | A a w y w x A w w y
127 43 rexeqdv J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a w ran g w y w a x | A a w y
128 fofn g : onto a x | A a g Fn
129 128 ad2antll J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a g Fn
130 sseq1 w = g k w y g k y
131 130 rexrn g Fn w ran g w y k g k y
132 129 131 syl J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a w ran g w y k g k y
133 127 132 bitr3d J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a w a x | A a w y k g k y
134 133 adantr J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J w a x | A a w y k g k y
135 elfz1end k k 1 k
136 fz1ssnn 1 k
137 53 adantr J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J dom g =
138 136 137 sseqtrrid J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J 1 k dom g
139 funfvima2 Fun g 1 k dom g k 1 k g k g 1 k
140 67 138 139 syl2an2r J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J k 1 k g k g 1 k
141 140 imp J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J k 1 k g k g 1 k
142 135 141 sylan2b J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J k g k g 1 k
143 intss1 g k g 1 k g 1 k g k
144 sstr2 g 1 k g k g k y g 1 k y
145 142 143 144 3syl J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J k g k y g 1 k y
146 145 reximdva J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J k g k y k g 1 k y
147 134 146 sylbid J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J w a x | A a w y k g 1 k y
148 126 147 syl5bir J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J w x A w w y k g 1 k y
149 124 148 syld J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J A y k g 1 k y
150 98 sseq1d J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k n g 1 n k y g 1 k y
151 150 rexbidva J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a k n g 1 n k y k g 1 k y
152 151 adantr J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J k n g 1 n k y k g 1 k y
153 149 152 sylibrd J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J A y k n g 1 n k y
154 153 ralrimiva J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a y J A y k n g 1 n k y
155 nnex V
156 155 mptex n g 1 n V
157 feq1 f = n g 1 n f : J n g 1 n : J
158 fveq1 f = n g 1 n f k = n g 1 n k
159 158 eleq2d f = n g 1 n A f k A n g 1 n k
160 fveq1 f = n g 1 n f k + 1 = n g 1 n k + 1
161 160 158 sseq12d f = n g 1 n f k + 1 f k n g 1 n k + 1 n g 1 n k
162 159 161 anbi12d f = n g 1 n A f k f k + 1 f k A n g 1 n k n g 1 n k + 1 n g 1 n k
163 162 ralbidv f = n g 1 n k A f k f k + 1 f k k A n g 1 n k n g 1 n k + 1 n g 1 n k
164 158 sseq1d f = n g 1 n f k y n g 1 n k y
165 164 rexbidv f = n g 1 n k f k y k n g 1 n k y
166 165 imbi2d f = n g 1 n A y k f k y A y k n g 1 n k y
167 166 ralbidv f = n g 1 n y J A y k f k y y J A y k n g 1 n k y
168 157 163 167 3anbi123d f = n g 1 n f : J k A f k f k + 1 f k y J A y k f k y n g 1 n : J k A n g 1 n k n g 1 n k + 1 n g 1 n k y J A y k n g 1 n k y
169 156 168 spcev n g 1 n : J k A n g 1 n k n g 1 n k + 1 n g 1 n k y J A y k n g 1 n k y f f : J k A f k f k + 1 f k y J A y k f k y
170 75 116 154 169 syl3anc J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a f f : J k A f k f k + 1 f k y J A y k f k y
171 170 expr J 1 st 𝜔 A X x 𝒫 J z J A z w x A w w z g : onto a x | A a f f : J k A f k f k + 1 f k y J A y k f k y
172 171 adantrrl J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z g : onto a x | A a f f : J k A f k f k + 1 f k y J A y k f k y
173 172 exlimdv J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z g g : onto a x | A a f f : J k A f k f k + 1 f k y J A y k f k y
174 39 173 mpd J 1 st 𝜔 A X x 𝒫 J x ω z J A z w x A w w z f f : J k A f k f k + 1 f k y J A y k f k y
175 2 174 rexlimddv J 1 st 𝜔 A X f f : J k A f k f k + 1 f k y J A y k f k y