Metamath Proof Explorer


Theorem 1stcclb

Description: A property of points in a first-countable topology. (Contributed by Jeff Hankins, 22-Aug-2009)

Ref Expression
Hypothesis 1stcclb.1 X=J
Assertion 1stcclb J1st𝜔AXx𝒫JxωyJAyzxAzzy

Proof

Step Hyp Ref Expression
1 1stcclb.1 X=J
2 1 is1stc2 J1st𝜔JTopwXx𝒫JxωyJwyzxwzzy
3 2 simprbi J1st𝜔wXx𝒫JxωyJwyzxwzzy
4 eleq1 w=AwyAy
5 eleq1 w=AwzAz
6 5 anbi1d w=AwzzyAzzy
7 6 rexbidv w=AzxwzzyzxAzzy
8 4 7 imbi12d w=AwyzxwzzyAyzxAzzy
9 8 ralbidv w=AyJwyzxwzzyyJAyzxAzzy
10 9 anbi2d w=AxωyJwyzxwzzyxωyJAyzxAzzy
11 10 rexbidv w=Ax𝒫JxωyJwyzxwzzyx𝒫JxωyJAyzxAzzy
12 11 rspcv AXwXx𝒫JxωyJwyzxwzzyx𝒫JxωyJAyzxAzzy
13 3 12 mpan9 J1st𝜔AXx𝒫JxωyJAyzxAzzy