Metamath Proof Explorer


Definition df-1stc

Description: Define the class of all first-countable topologies. (Contributed by Jeff Hankins, 22-Aug-2009)

Ref Expression
Assertion df-1stc 1st𝜔=jTop|xjy𝒫jyωzjxzxy𝒫z

Detailed syntax breakdown

Step Hyp Ref Expression
0 c1stc class1st𝜔
1 vj setvarj
2 ctop classTop
3 vx setvarx
4 1 cv setvarj
5 4 cuni classj
6 vy setvary
7 4 cpw class𝒫j
8 6 cv setvary
9 cdom class
10 com classω
11 8 10 9 wbr wffyω
12 vz setvarz
13 3 cv setvarx
14 12 cv setvarz
15 13 14 wcel wffxz
16 14 cpw class𝒫z
17 8 16 cin classy𝒫z
18 17 cuni classy𝒫z
19 13 18 wcel wffxy𝒫z
20 15 19 wi wffxzxy𝒫z
21 20 12 4 wral wffzjxzxy𝒫z
22 11 21 wa wffyωzjxzxy𝒫z
23 22 6 7 wrex wffy𝒫jyωzjxzxy𝒫z
24 23 3 5 wral wffxjy𝒫jyωzjxzxy𝒫z
25 24 1 2 crab classjTop|xjy𝒫jyωzjxzxy𝒫z
26 0 25 wceq wff1st𝜔=jTop|xjy𝒫jyωzjxzxy𝒫z