Metamath Proof Explorer


Theorem fiinopn

Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012)

Ref Expression
Assertion fiinopn JTopAJAAFinAJ

Proof

Step Hyp Ref Expression
1 elpwg AFinA𝒫JAJ
2 sseq1 x=AxJAJ
3 neeq1 x=AxA
4 eleq1 x=AxFinAFin
5 2 3 4 3anbi123d x=AxJxxFinAJAAFin
6 inteq x=Ax=A
7 6 eleq1d x=AxJAJ
8 7 imbi2d x=AJTopxJJTopAJ
9 5 8 imbi12d x=AxJxxFinJTopxJAJAAFinJTopAJ
10 sp xxJxxFinxJxJxxFinxJ
11 10 adantl xxJxJxxJxxFinxJxJxxFinxJ
12 istop2g JTopJTopxxJxJxxJxxFinxJ
13 12 ibi JTopxxJxJxxJxxFinxJ
14 11 13 syl11 xJxxFinJTopxJ
15 9 14 vtoclg A𝒫JAJAAFinJTopAJ
16 15 com12 AJAAFinA𝒫JJTopAJ
17 16 3exp AJAAFinA𝒫JJTopAJ
18 17 com3r AFinAJAA𝒫JJTopAJ
19 18 com4r A𝒫JAFinAJAJTopAJ
20 1 19 syl6bir AFinAJAFinAJAJTopAJ
21 20 pm2.43a AFinAJAJAJTopAJ
22 21 com4l AJAJAAFinJTopAJ
23 22 pm2.43i AJAAFinJTopAJ
24 23 3imp AJAAFinJTopAJ
25 24 com12 JTopAJAAFinAJ