Step |
Hyp |
Ref |
Expression |
1 |
|
elpwg |
|- ( A e. Fin -> ( A e. ~P J <-> A C_ J ) ) |
2 |
|
sseq1 |
|- ( x = A -> ( x C_ J <-> A C_ J ) ) |
3 |
|
neeq1 |
|- ( x = A -> ( x =/= (/) <-> A =/= (/) ) ) |
4 |
|
eleq1 |
|- ( x = A -> ( x e. Fin <-> A e. Fin ) ) |
5 |
2 3 4
|
3anbi123d |
|- ( x = A -> ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) <-> ( A C_ J /\ A =/= (/) /\ A e. Fin ) ) ) |
6 |
|
inteq |
|- ( x = A -> |^| x = |^| A ) |
7 |
6
|
eleq1d |
|- ( x = A -> ( |^| x e. J <-> |^| A e. J ) ) |
8 |
7
|
imbi2d |
|- ( x = A -> ( ( J e. Top -> |^| x e. J ) <-> ( J e. Top -> |^| A e. J ) ) ) |
9 |
5 8
|
imbi12d |
|- ( x = A -> ( ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> ( J e. Top -> |^| x e. J ) ) <-> ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> ( J e. Top -> |^| A e. J ) ) ) ) |
10 |
|
sp |
|- ( A. x ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) -> ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) ) |
11 |
10
|
adantl |
|- ( ( A. x ( x C_ J -> U. x e. J ) /\ A. x ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) ) -> ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) ) |
12 |
|
istop2g |
|- ( J e. Top -> ( J e. Top <-> ( A. x ( x C_ J -> U. x e. J ) /\ A. x ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) ) ) ) |
13 |
12
|
ibi |
|- ( J e. Top -> ( A. x ( x C_ J -> U. x e. J ) /\ A. x ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) ) ) |
14 |
11 13
|
syl11 |
|- ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> ( J e. Top -> |^| x e. J ) ) |
15 |
9 14
|
vtoclg |
|- ( A e. ~P J -> ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> ( J e. Top -> |^| A e. J ) ) ) |
16 |
15
|
com12 |
|- ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> ( A e. ~P J -> ( J e. Top -> |^| A e. J ) ) ) |
17 |
16
|
3exp |
|- ( A C_ J -> ( A =/= (/) -> ( A e. Fin -> ( A e. ~P J -> ( J e. Top -> |^| A e. J ) ) ) ) ) |
18 |
17
|
com3r |
|- ( A e. Fin -> ( A C_ J -> ( A =/= (/) -> ( A e. ~P J -> ( J e. Top -> |^| A e. J ) ) ) ) ) |
19 |
18
|
com4r |
|- ( A e. ~P J -> ( A e. Fin -> ( A C_ J -> ( A =/= (/) -> ( J e. Top -> |^| A e. J ) ) ) ) ) |
20 |
1 19
|
syl6bir |
|- ( A e. Fin -> ( A C_ J -> ( A e. Fin -> ( A C_ J -> ( A =/= (/) -> ( J e. Top -> |^| A e. J ) ) ) ) ) ) |
21 |
20
|
pm2.43a |
|- ( A e. Fin -> ( A C_ J -> ( A C_ J -> ( A =/= (/) -> ( J e. Top -> |^| A e. J ) ) ) ) ) |
22 |
21
|
com4l |
|- ( A C_ J -> ( A C_ J -> ( A =/= (/) -> ( A e. Fin -> ( J e. Top -> |^| A e. J ) ) ) ) ) |
23 |
22
|
pm2.43i |
|- ( A C_ J -> ( A =/= (/) -> ( A e. Fin -> ( J e. Top -> |^| A e. J ) ) ) ) |
24 |
23
|
3imp |
|- ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> ( J e. Top -> |^| A e. J ) ) |
25 |
24
|
com12 |
|- ( J e. Top -> ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> |^| A e. J ) ) |