Metamath Proof Explorer


Theorem fiinopn

Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012)

Ref Expression
Assertion fiinopn
|- ( J e. Top -> ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> |^| A e. J ) )

Proof

Step Hyp Ref Expression
1 elpwg
 |-  ( A e. Fin -> ( A e. ~P J <-> A C_ J ) )
2 sseq1
 |-  ( x = A -> ( x C_ J <-> A C_ J ) )
3 neeq1
 |-  ( x = A -> ( x =/= (/) <-> A =/= (/) ) )
4 eleq1
 |-  ( x = A -> ( x e. Fin <-> A e. Fin ) )
5 2 3 4 3anbi123d
 |-  ( x = A -> ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) <-> ( A C_ J /\ A =/= (/) /\ A e. Fin ) ) )
6 inteq
 |-  ( x = A -> |^| x = |^| A )
7 6 eleq1d
 |-  ( x = A -> ( |^| x e. J <-> |^| A e. J ) )
8 7 imbi2d
 |-  ( x = A -> ( ( J e. Top -> |^| x e. J ) <-> ( J e. Top -> |^| A e. J ) ) )
9 5 8 imbi12d
 |-  ( x = A -> ( ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> ( J e. Top -> |^| x e. J ) ) <-> ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> ( J e. Top -> |^| A e. J ) ) ) )
10 sp
 |-  ( A. x ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) -> ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) )
11 10 adantl
 |-  ( ( A. x ( x C_ J -> U. x e. J ) /\ A. x ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) ) -> ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) )
12 istop2g
 |-  ( J e. Top -> ( J e. Top <-> ( A. x ( x C_ J -> U. x e. J ) /\ A. x ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) ) ) )
13 12 ibi
 |-  ( J e. Top -> ( A. x ( x C_ J -> U. x e. J ) /\ A. x ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) ) )
14 11 13 syl11
 |-  ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> ( J e. Top -> |^| x e. J ) )
15 9 14 vtoclg
 |-  ( A e. ~P J -> ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> ( J e. Top -> |^| A e. J ) ) )
16 15 com12
 |-  ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> ( A e. ~P J -> ( J e. Top -> |^| A e. J ) ) )
17 16 3exp
 |-  ( A C_ J -> ( A =/= (/) -> ( A e. Fin -> ( A e. ~P J -> ( J e. Top -> |^| A e. J ) ) ) ) )
18 17 com3r
 |-  ( A e. Fin -> ( A C_ J -> ( A =/= (/) -> ( A e. ~P J -> ( J e. Top -> |^| A e. J ) ) ) ) )
19 18 com4r
 |-  ( A e. ~P J -> ( A e. Fin -> ( A C_ J -> ( A =/= (/) -> ( J e. Top -> |^| A e. J ) ) ) ) )
20 1 19 syl6bir
 |-  ( A e. Fin -> ( A C_ J -> ( A e. Fin -> ( A C_ J -> ( A =/= (/) -> ( J e. Top -> |^| A e. J ) ) ) ) ) )
21 20 pm2.43a
 |-  ( A e. Fin -> ( A C_ J -> ( A C_ J -> ( A =/= (/) -> ( J e. Top -> |^| A e. J ) ) ) ) )
22 21 com4l
 |-  ( A C_ J -> ( A C_ J -> ( A =/= (/) -> ( A e. Fin -> ( J e. Top -> |^| A e. J ) ) ) ) )
23 22 pm2.43i
 |-  ( A C_ J -> ( A =/= (/) -> ( A e. Fin -> ( J e. Top -> |^| A e. J ) ) ) )
24 23 3imp
 |-  ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> ( J e. Top -> |^| A e. J ) )
25 24 com12
 |-  ( J e. Top -> ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> |^| A e. J ) )