Metamath Proof Explorer


Theorem iinopn

Description: The intersection of a nonempty finite family of open sets is open. (Contributed by Mario Carneiro, 14-Sep-2014)

Ref Expression
Assertion iinopn JTopAFinAxABJxABJ

Proof

Step Hyp Ref Expression
1 simpr3 JTopAFinAxABJxABJ
2 dfiin2g xABJxAB=y|xAy=B
3 1 2 syl JTopAFinAxABJxAB=y|xAy=B
4 simpl JTopAFinAxABJJTop
5 eqid xAB=xAB
6 5 rnmpt ranxAB=y|xAy=B
7 5 fmpt xABJxAB:AJ
8 1 7 sylib JTopAFinAxABJxAB:AJ
9 8 frnd JTopAFinAxABJranxABJ
10 6 9 eqsstrrid JTopAFinAxABJy|xAy=BJ
11 8 fdmd JTopAFinAxABJdomxAB=A
12 simpr2 JTopAFinAxABJA
13 11 12 eqnetrd JTopAFinAxABJdomxAB
14 dm0rn0 domxAB=ranxAB=
15 6 eqeq1i ranxAB=y|xAy=B=
16 14 15 bitri domxAB=y|xAy=B=
17 16 necon3bii domxABy|xAy=B
18 13 17 sylib JTopAFinAxABJy|xAy=B
19 simpr1 JTopAFinAxABJAFin
20 abrexfi AFiny|xAy=BFin
21 19 20 syl JTopAFinAxABJy|xAy=BFin
22 fiinopn JTopy|xAy=BJy|xAy=By|xAy=BFiny|xAy=BJ
23 22 imp JTopy|xAy=BJy|xAy=By|xAy=BFiny|xAy=BJ
24 4 10 18 21 23 syl13anc JTopAFinAxABJy|xAy=BJ
25 3 24 eqeltrd JTopAFinAxABJxABJ