Metamath Proof Explorer


Theorem iinopn

Description: The intersection of a nonempty finite family of open sets is open. (Contributed by Mario Carneiro, 14-Sep-2014)

Ref Expression
Assertion iinopn J Top A Fin A x A B J x A B J

Proof

Step Hyp Ref Expression
1 simpr3 J Top A Fin A x A B J x A B J
2 dfiin2g x A B J x A B = y | x A y = B
3 1 2 syl J Top A Fin A x A B J x A B = y | x A y = B
4 simpl J Top A Fin A x A B J J Top
5 eqid x A B = x A B
6 5 rnmpt ran x A B = y | x A y = B
7 5 fmpt x A B J x A B : A J
8 1 7 sylib J Top A Fin A x A B J x A B : A J
9 8 frnd J Top A Fin A x A B J ran x A B J
10 6 9 eqsstrrid J Top A Fin A x A B J y | x A y = B J
11 8 fdmd J Top A Fin A x A B J dom x A B = A
12 simpr2 J Top A Fin A x A B J A
13 11 12 eqnetrd J Top A Fin A x A B J dom x A B
14 dm0rn0 dom x A B = ran x A B =
15 6 eqeq1i ran x A B = y | x A y = B =
16 14 15 bitri dom x A B = y | x A y = B =
17 16 necon3bii dom x A B y | x A y = B
18 13 17 sylib J Top A Fin A x A B J y | x A y = B
19 simpr1 J Top A Fin A x A B J A Fin
20 abrexfi A Fin y | x A y = B Fin
21 19 20 syl J Top A Fin A x A B J y | x A y = B Fin
22 fiinopn J Top y | x A y = B J y | x A y = B y | x A y = B Fin y | x A y = B J
23 22 imp J Top y | x A y = B J y | x A y = B y | x A y = B Fin y | x A y = B J
24 4 10 18 21 23 syl13anc J Top A Fin A x A B J y | x A y = B J
25 3 24 eqeltrd J Top A Fin A x A B J x A B J