Metamath Proof Explorer


Theorem abrexfi

Description: An image set from a finite set is finite. (Contributed by Mario Carneiro, 13-Feb-2014)

Ref Expression
Assertion abrexfi AFiny|xAy=BFin

Proof

Step Hyp Ref Expression
1 eqid xAB=xAB
2 1 rnmpt ranxAB=y|xAy=B
3 mptfi AFinxABFin
4 rnfi xABFinranxABFin
5 3 4 syl AFinranxABFin
6 2 5 eqeltrrid AFiny|xAy=BFin