Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets (cont.)
abrexfi
Next ⟩
cnvimamptfin
Metamath Proof Explorer
Ascii
Unicode
Theorem
abrexfi
Description:
An image set from a finite set is finite.
(Contributed by
Mario Carneiro
, 13-Feb-2014)
Ref
Expression
Assertion
abrexfi
⊢
A
∈
Fin
→
y
|
∃
x
∈
A
y
=
B
∈
Fin
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
x
∈
A
⟼
B
=
x
∈
A
⟼
B
2
1
rnmpt
⊢
ran
⁡
x
∈
A
⟼
B
=
y
|
∃
x
∈
A
y
=
B
3
mptfi
⊢
A
∈
Fin
→
x
∈
A
⟼
B
∈
Fin
4
rnfi
⊢
x
∈
A
⟼
B
∈
Fin
→
ran
⁡
x
∈
A
⟼
B
∈
Fin
5
3
4
syl
⊢
A
∈
Fin
→
ran
⁡
x
∈
A
⟼
B
∈
Fin
6
2
5
eqeltrrid
⊢
A
∈
Fin
→
y
|
∃
x
∈
A
y
=
B
∈
Fin