Description: An image set from a finite set is finite. (Contributed by Mario Carneiro, 13-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abrexfi | |- ( A e. Fin -> { y | E. x e. A y = B } e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 2 | 1 | rnmpt | |- ran ( x e. A |-> B ) = { y | E. x e. A y = B } |
| 3 | mptfi | |- ( A e. Fin -> ( x e. A |-> B ) e. Fin ) |
|
| 4 | rnfi | |- ( ( x e. A |-> B ) e. Fin -> ran ( x e. A |-> B ) e. Fin ) |
|
| 5 | 3 4 | syl | |- ( A e. Fin -> ran ( x e. A |-> B ) e. Fin ) |
| 6 | 2 5 | eqeltrrid | |- ( A e. Fin -> { y | E. x e. A y = B } e. Fin ) |