Metamath Proof Explorer


Theorem axcc4

Description: A version of axcc3 that uses wffs instead of classes. (Contributed by Mario Carneiro, 7-Apr-2013)

Ref Expression
Hypotheses axcc4.1 AV
axcc4.2 Nω
axcc4.3 x=fnφψ
Assertion axcc4 nNxAφff:NAnNψ

Proof

Step Hyp Ref Expression
1 axcc4.1 AV
2 axcc4.2 Nω
3 axcc4.3 x=fnφψ
4 1 rabex xA|φV
5 4 2 axcc3 ffFnNnNxA|φfnxA|φ
6 rabn0 xA|φxAφ
7 pm2.27 xA|φxA|φfnxA|φfnxA|φ
8 6 7 sylbir xAφxA|φfnxA|φfnxA|φ
9 3 elrab fnxA|φfnAψ
10 8 9 imbitrdi xAφxA|φfnxA|φfnAψ
11 10 ral2imi nNxAφnNxA|φfnxA|φnNfnAψ
12 simpl fnAψfnA
13 12 ralimi nNfnAψnNfnA
14 11 13 syl6 nNxAφnNxA|φfnxA|φnNfnA
15 14 anim2d nNxAφfFnNnNxA|φfnxA|φfFnNnNfnA
16 ffnfv f:NAfFnNnNfnA
17 15 16 imbitrrdi nNxAφfFnNnNxA|φfnxA|φf:NA
18 simpr fnAψψ
19 18 ralimi nNfnAψnNψ
20 11 19 syl6 nNxAφnNxA|φfnxA|φnNψ
21 20 adantld nNxAφfFnNnNxA|φfnxA|φnNψ
22 17 21 jcad nNxAφfFnNnNxA|φfnxA|φf:NAnNψ
23 22 eximdv nNxAφffFnNnNxA|φfnxA|φff:NAnNψ
24 5 23 mpi nNxAφff:NAnNψ