Step |
Hyp |
Ref |
Expression |
1 |
|
mhphf4.q |
|- Q = ( I eval S ) |
2 |
|
mhphf4.h |
|- H = ( I mHomP S ) |
3 |
|
mhphf4.k |
|- K = ( Base ` S ) |
4 |
|
mhphf4.f |
|- F = ( S freeLMod I ) |
5 |
|
mhphf4.m |
|- M = ( Base ` F ) |
6 |
|
mhphf4.b |
|- .xb = ( .s ` F ) |
7 |
|
mhphf4.x |
|- .x. = ( .r ` S ) |
8 |
|
mhphf4.e |
|- .^ = ( .g ` ( mulGrp ` S ) ) |
9 |
|
mhphf4.s |
|- ( ph -> S e. CRing ) |
10 |
|
mhphf4.l |
|- ( ph -> L e. K ) |
11 |
|
mhphf4.p |
|- ( ph -> X e. ( H ` N ) ) |
12 |
|
mhphf4.a |
|- ( ph -> A e. M ) |
13 |
1 3
|
evlval |
|- Q = ( ( I evalSub S ) ` K ) |
14 |
|
eqid |
|- ( I mHomP ( S |`s K ) ) = ( I mHomP ( S |`s K ) ) |
15 |
|
eqid |
|- ( S |`s K ) = ( S |`s K ) |
16 |
9
|
crngringd |
|- ( ph -> S e. Ring ) |
17 |
3
|
subrgid |
|- ( S e. Ring -> K e. ( SubRing ` S ) ) |
18 |
16 17
|
syl |
|- ( ph -> K e. ( SubRing ` S ) ) |
19 |
3
|
ressid |
|- ( S e. CRing -> ( S |`s K ) = S ) |
20 |
9 19
|
syl |
|- ( ph -> ( S |`s K ) = S ) |
21 |
20
|
eqcomd |
|- ( ph -> S = ( S |`s K ) ) |
22 |
21
|
oveq2d |
|- ( ph -> ( I mHomP S ) = ( I mHomP ( S |`s K ) ) ) |
23 |
2 22
|
eqtrid |
|- ( ph -> H = ( I mHomP ( S |`s K ) ) ) |
24 |
23
|
fveq1d |
|- ( ph -> ( H ` N ) = ( ( I mHomP ( S |`s K ) ) ` N ) ) |
25 |
11 24
|
eleqtrd |
|- ( ph -> X e. ( ( I mHomP ( S |`s K ) ) ` N ) ) |
26 |
13 14 15 3 4 5 6 7 8 9 18 10 25 12
|
mhphf3 |
|- ( ph -> ( ( Q ` X ) ` ( L .xb A ) ) = ( ( N .^ L ) .x. ( ( Q ` X ) ` A ) ) ) |