Metamath Proof Explorer


Theorem mhphf4

Description: A homogeneous polynomial defines a homogeneous function; this is mhphf3 with evalSub collapsed to eval . (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses mhphf4.q
|- Q = ( I eval S )
mhphf4.h
|- H = ( I mHomP S )
mhphf4.k
|- K = ( Base ` S )
mhphf4.f
|- F = ( S freeLMod I )
mhphf4.m
|- M = ( Base ` F )
mhphf4.b
|- .xb = ( .s ` F )
mhphf4.x
|- .x. = ( .r ` S )
mhphf4.e
|- .^ = ( .g ` ( mulGrp ` S ) )
mhphf4.i
|- ( ph -> I e. V )
mhphf4.s
|- ( ph -> S e. CRing )
mhphf4.l
|- ( ph -> L e. K )
mhphf4.n
|- ( ph -> N e. NN0 )
mhphf4.p
|- ( ph -> X e. ( H ` N ) )
mhphf4.a
|- ( ph -> A e. M )
Assertion mhphf4
|- ( ph -> ( ( Q ` X ) ` ( L .xb A ) ) = ( ( N .^ L ) .x. ( ( Q ` X ) ` A ) ) )

Proof

Step Hyp Ref Expression
1 mhphf4.q
 |-  Q = ( I eval S )
2 mhphf4.h
 |-  H = ( I mHomP S )
3 mhphf4.k
 |-  K = ( Base ` S )
4 mhphf4.f
 |-  F = ( S freeLMod I )
5 mhphf4.m
 |-  M = ( Base ` F )
6 mhphf4.b
 |-  .xb = ( .s ` F )
7 mhphf4.x
 |-  .x. = ( .r ` S )
8 mhphf4.e
 |-  .^ = ( .g ` ( mulGrp ` S ) )
9 mhphf4.i
 |-  ( ph -> I e. V )
10 mhphf4.s
 |-  ( ph -> S e. CRing )
11 mhphf4.l
 |-  ( ph -> L e. K )
12 mhphf4.n
 |-  ( ph -> N e. NN0 )
13 mhphf4.p
 |-  ( ph -> X e. ( H ` N ) )
14 mhphf4.a
 |-  ( ph -> A e. M )
15 1 3 evlval
 |-  Q = ( ( I evalSub S ) ` K )
16 eqid
 |-  ( I mHomP ( S |`s K ) ) = ( I mHomP ( S |`s K ) )
17 eqid
 |-  ( S |`s K ) = ( S |`s K )
18 10 crngringd
 |-  ( ph -> S e. Ring )
19 3 subrgid
 |-  ( S e. Ring -> K e. ( SubRing ` S ) )
20 18 19 syl
 |-  ( ph -> K e. ( SubRing ` S ) )
21 3 ressid
 |-  ( S e. CRing -> ( S |`s K ) = S )
22 10 21 syl
 |-  ( ph -> ( S |`s K ) = S )
23 22 eqcomd
 |-  ( ph -> S = ( S |`s K ) )
24 23 oveq2d
 |-  ( ph -> ( I mHomP S ) = ( I mHomP ( S |`s K ) ) )
25 2 24 eqtrid
 |-  ( ph -> H = ( I mHomP ( S |`s K ) ) )
26 25 fveq1d
 |-  ( ph -> ( H ` N ) = ( ( I mHomP ( S |`s K ) ) ` N ) )
27 13 26 eleqtrd
 |-  ( ph -> X e. ( ( I mHomP ( S |`s K ) ) ` N ) )
28 15 16 17 3 4 5 6 7 8 9 10 20 11 12 27 14 mhphf3
 |-  ( ph -> ( ( Q ` X ) ` ( L .xb A ) ) = ( ( N .^ L ) .x. ( ( Q ` X ) ` A ) ) )