Metamath Proof Explorer


Theorem mhphf4

Description: A homogeneous polynomial defines a homogeneous function; this is mhphf3 with evalSub collapsed to eval . (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses mhphf4.q Q = I eval S
mhphf4.h H = I mHomP S
mhphf4.k K = Base S
mhphf4.f F = S freeLMod I
mhphf4.m M = Base F
mhphf4.b ˙ = F
mhphf4.x · ˙ = S
mhphf4.e × ˙ = mulGrp S
mhphf4.i φ I V
mhphf4.s φ S CRing
mhphf4.l φ L K
mhphf4.n φ N 0
mhphf4.p φ X H N
mhphf4.a φ A M
Assertion mhphf4 φ Q X L ˙ A = N × ˙ L · ˙ Q X A

Proof

Step Hyp Ref Expression
1 mhphf4.q Q = I eval S
2 mhphf4.h H = I mHomP S
3 mhphf4.k K = Base S
4 mhphf4.f F = S freeLMod I
5 mhphf4.m M = Base F
6 mhphf4.b ˙ = F
7 mhphf4.x · ˙ = S
8 mhphf4.e × ˙ = mulGrp S
9 mhphf4.i φ I V
10 mhphf4.s φ S CRing
11 mhphf4.l φ L K
12 mhphf4.n φ N 0
13 mhphf4.p φ X H N
14 mhphf4.a φ A M
15 1 3 evlval Q = I evalSub S K
16 eqid I mHomP S 𝑠 K = I mHomP S 𝑠 K
17 eqid S 𝑠 K = S 𝑠 K
18 10 crngringd φ S Ring
19 3 subrgid S Ring K SubRing S
20 18 19 syl φ K SubRing S
21 3 ressid S CRing S 𝑠 K = S
22 10 21 syl φ S 𝑠 K = S
23 22 eqcomd φ S = S 𝑠 K
24 23 oveq2d φ I mHomP S = I mHomP S 𝑠 K
25 2 24 eqtrid φ H = I mHomP S 𝑠 K
26 25 fveq1d φ H N = I mHomP S 𝑠 K N
27 13 26 eleqtrd φ X I mHomP S 𝑠 K N
28 15 16 17 3 4 5 6 7 8 9 10 20 11 12 27 14 mhphf3 φ Q X L ˙ A = N × ˙ L · ˙ Q X A