Metamath Proof Explorer


Theorem mhphf3

Description: A homogeneous polynomial defines a homogeneous function; this is mhphf2 with the finite support restriction ( frlmpws , frlmbas ) on the assignments A from variables to values. See comment of mhphf2 . (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses mhphf3.q Q=IevalSubSR
mhphf3.h H=ImHomPU
mhphf3.u U=S𝑠R
mhphf3.k K=BaseS
mhphf3.f F=SfreeLModI
mhphf3.m M=BaseF
mhphf3.b ˙=F
mhphf3.x ·˙=S
mhphf3.e ×˙=mulGrpS
mhphf3.i φIV
mhphf3.s φSCRing
mhphf3.r φRSubRingS
mhphf3.l φLR
mhphf3.n φN0
mhphf3.p φXHN
mhphf3.a φAM
Assertion mhphf3 φQXL˙A=N×˙L·˙QXA

Proof

Step Hyp Ref Expression
1 mhphf3.q Q=IevalSubSR
2 mhphf3.h H=ImHomPU
3 mhphf3.u U=S𝑠R
4 mhphf3.k K=BaseS
5 mhphf3.f F=SfreeLModI
6 mhphf3.m M=BaseF
7 mhphf3.b ˙=F
8 mhphf3.x ·˙=S
9 mhphf3.e ×˙=mulGrpS
10 mhphf3.i φIV
11 mhphf3.s φSCRing
12 mhphf3.r φRSubRingS
13 mhphf3.l φLR
14 mhphf3.n φN0
15 mhphf3.p φXHN
16 mhphf3.a φAM
17 4 subrgss RSubRingSRK
18 12 17 syl φRK
19 18 13 sseldd φLK
20 5 6 4 10 19 16 7 8 frlmvscafval φL˙A=I×L·˙fA
21 20 fveq2d φQXL˙A=QXI×L·˙fA
22 5 4 6 frlmbasmap IVAMAKI
23 10 16 22 syl2anc φAKI
24 1 2 3 4 8 9 10 11 12 13 14 15 23 mhphf φQXI×L·˙fA=N×˙L·˙QXA
25 21 24 eqtrd φQXL˙A=N×˙L·˙QXA