Description: A homogeneous polynomial defines a homogeneous function; this is mhphf2 with the finite support restriction ( frlmpws , frlmbas ) on the assignments A from variables to values. See comment of mhphf2 . (Contributed by SN, 23-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mhphf3.q | |
|
mhphf3.h | |
||
mhphf3.u | |
||
mhphf3.k | |
||
mhphf3.f | |
||
mhphf3.m | |
||
mhphf3.b | |
||
mhphf3.x | |
||
mhphf3.e | |
||
mhphf3.i | |
||
mhphf3.s | |
||
mhphf3.r | |
||
mhphf3.l | |
||
mhphf3.n | |
||
mhphf3.p | |
||
mhphf3.a | |
||
Assertion | mhphf3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhphf3.q | |
|
2 | mhphf3.h | |
|
3 | mhphf3.u | |
|
4 | mhphf3.k | |
|
5 | mhphf3.f | |
|
6 | mhphf3.m | |
|
7 | mhphf3.b | |
|
8 | mhphf3.x | |
|
9 | mhphf3.e | |
|
10 | mhphf3.i | |
|
11 | mhphf3.s | |
|
12 | mhphf3.r | |
|
13 | mhphf3.l | |
|
14 | mhphf3.n | |
|
15 | mhphf3.p | |
|
16 | mhphf3.a | |
|
17 | 4 | subrgss | |
18 | 12 17 | syl | |
19 | 18 13 | sseldd | |
20 | 5 6 4 10 19 16 7 8 | frlmvscafval | |
21 | 20 | fveq2d | |
22 | 5 4 6 | frlmbasmap | |
23 | 10 16 22 | syl2anc | |
24 | 1 2 3 4 8 9 10 11 12 13 14 15 23 | mhphf | |
25 | 21 24 | eqtrd | |