Metamath Proof Explorer


Theorem mhphf3

Description: A homogeneous polynomial defines a homogeneous function; this is mhphf2 with the finite support restriction ( frlmpws , frlmbas ) on the assignments A from variables to values. See comment of mhphf2 . (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses mhphf3.q Q = I evalSub S R
mhphf3.h H = I mHomP U
mhphf3.u U = S 𝑠 R
mhphf3.k K = Base S
mhphf3.f F = S freeLMod I
mhphf3.m M = Base F
mhphf3.b ˙ = F
mhphf3.x · ˙ = S
mhphf3.e × ˙ = mulGrp S
mhphf3.i φ I V
mhphf3.s φ S CRing
mhphf3.r φ R SubRing S
mhphf3.l φ L R
mhphf3.n φ N 0
mhphf3.p φ X H N
mhphf3.a φ A M
Assertion mhphf3 φ Q X L ˙ A = N × ˙ L · ˙ Q X A

Proof

Step Hyp Ref Expression
1 mhphf3.q Q = I evalSub S R
2 mhphf3.h H = I mHomP U
3 mhphf3.u U = S 𝑠 R
4 mhphf3.k K = Base S
5 mhphf3.f F = S freeLMod I
6 mhphf3.m M = Base F
7 mhphf3.b ˙ = F
8 mhphf3.x · ˙ = S
9 mhphf3.e × ˙ = mulGrp S
10 mhphf3.i φ I V
11 mhphf3.s φ S CRing
12 mhphf3.r φ R SubRing S
13 mhphf3.l φ L R
14 mhphf3.n φ N 0
15 mhphf3.p φ X H N
16 mhphf3.a φ A M
17 4 subrgss R SubRing S R K
18 12 17 syl φ R K
19 18 13 sseldd φ L K
20 5 6 4 10 19 16 7 8 frlmvscafval φ L ˙ A = I × L · ˙ f A
21 20 fveq2d φ Q X L ˙ A = Q X I × L · ˙ f A
22 5 4 6 frlmbasmap I V A M A K I
23 10 16 22 syl2anc φ A K I
24 1 2 3 4 8 9 10 11 12 13 14 15 23 mhphf φ Q X I × L · ˙ f A = N × ˙ L · ˙ Q X A
25 21 24 eqtrd φ Q X L ˙ A = N × ˙ L · ˙ Q X A