Step |
Hyp |
Ref |
Expression |
1 |
|
mhphf3.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
mhphf3.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑈 ) |
3 |
|
mhphf3.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
4 |
|
mhphf3.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
5 |
|
mhphf3.f |
⊢ 𝐹 = ( 𝑆 freeLMod 𝐼 ) |
6 |
|
mhphf3.m |
⊢ 𝑀 = ( Base ‘ 𝐹 ) |
7 |
|
mhphf3.b |
⊢ ∙ = ( ·𝑠 ‘ 𝐹 ) |
8 |
|
mhphf3.x |
⊢ · = ( .r ‘ 𝑆 ) |
9 |
|
mhphf3.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
10 |
|
mhphf3.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
11 |
|
mhphf3.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
12 |
|
mhphf3.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
13 |
|
mhphf3.l |
⊢ ( 𝜑 → 𝐿 ∈ 𝑅 ) |
14 |
|
mhphf3.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
15 |
|
mhphf3.p |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) |
16 |
|
mhphf3.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑀 ) |
17 |
4
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
18 |
12 17
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ 𝐾 ) |
19 |
18 13
|
sseldd |
⊢ ( 𝜑 → 𝐿 ∈ 𝐾 ) |
20 |
5 6 4 10 19 16 7 8
|
frlmvscafval |
⊢ ( 𝜑 → ( 𝐿 ∙ 𝐴 ) = ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ ( 𝐿 ∙ 𝐴 ) ) = ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
22 |
5 4 6
|
frlmbasmap |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝑀 ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
23 |
10 16 22
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
24 |
1 2 3 4 8 9 10 11 12 13 14 15 23
|
mhphf |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) |
25 |
21 24
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ ( 𝐿 ∙ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) |