Step |
Hyp |
Ref |
Expression |
1 |
|
mhphf.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
mhphf.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑈 ) |
3 |
|
mhphf.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
4 |
|
mhphf.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
5 |
|
mhphf.m |
⊢ · = ( .r ‘ 𝑆 ) |
6 |
|
mhphf.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
7 |
|
mhphf.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
8 |
|
mhphf.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
9 |
|
mhphf.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
10 |
|
mhphf.l |
⊢ ( 𝜑 → 𝐿 ∈ 𝑅 ) |
11 |
|
mhphf.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
12 |
|
mhphf.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) |
13 |
|
mhphf.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
16 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑈 ) = ( 𝐼 mPoly 𝑈 ) |
17 |
|
eqid |
⊢ ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) = ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) |
18 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
19 |
|
eqid |
⊢ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } = { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } |
20 |
3
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
21 |
9 20
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
22 |
21
|
ringgrpd |
⊢ ( 𝜑 → 𝑈 ∈ Grp ) |
23 |
16 7 21
|
mplsca |
⊢ ( 𝜑 → 𝑈 = ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
24 |
23
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) = ( 0g ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) = ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) ) ) |
26 |
|
eqid |
⊢ ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) = ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) |
27 |
|
eqid |
⊢ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) = ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) |
28 |
16
|
mpllmod |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑈 ∈ Ring ) → ( 𝐼 mPoly 𝑈 ) ∈ LMod ) |
29 |
7 21 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 mPoly 𝑈 ) ∈ LMod ) |
30 |
16
|
mplring |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑈 ∈ Ring ) → ( 𝐼 mPoly 𝑈 ) ∈ Ring ) |
31 |
7 21 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 mPoly 𝑈 ) ∈ Ring ) |
32 |
26 27 29 31
|
ascl0 |
⊢ ( 𝜑 → ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) ) = ( 0g ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
33 |
|
eqid |
⊢ ( 0g ‘ ( 𝐼 mPoly 𝑈 ) ) = ( 0g ‘ ( 𝐼 mPoly 𝑈 ) ) |
34 |
16 18 15 33 7 22
|
mpl0 |
⊢ ( 𝜑 → ( 0g ‘ ( 𝐼 mPoly 𝑈 ) ) = ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑈 ) } ) ) |
35 |
25 32 34
|
3eqtrrd |
⊢ ( 𝜑 → ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑈 ) } ) = ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) |
36 |
3 5
|
ressmulr |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → · = ( .r ‘ 𝑈 ) ) |
37 |
9 36
|
syl |
⊢ ( 𝜑 → · = ( .r ‘ 𝑈 ) ) |
38 |
37
|
oveqd |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐿 ) · ( 0g ‘ 𝑈 ) ) = ( ( 𝑁 ↑ 𝐿 ) ( .r ‘ 𝑈 ) ( 0g ‘ 𝑈 ) ) ) |
39 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
40 |
39
|
subrgsubm |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) |
41 |
9 40
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) |
42 |
6
|
submmulgcl |
⊢ ( ( 𝑅 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ 𝑅 ) → ( 𝑁 ↑ 𝐿 ) ∈ 𝑅 ) |
43 |
41 11 10 42
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐿 ) ∈ 𝑅 ) |
44 |
3
|
subrgbas |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
45 |
9 44
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
46 |
43 45
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐿 ) ∈ ( Base ‘ 𝑈 ) ) |
47 |
|
eqid |
⊢ ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) |
48 |
14 47 15
|
ringrz |
⊢ ( ( 𝑈 ∈ Ring ∧ ( 𝑁 ↑ 𝐿 ) ∈ ( Base ‘ 𝑈 ) ) → ( ( 𝑁 ↑ 𝐿 ) ( .r ‘ 𝑈 ) ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑈 ) ) |
49 |
21 46 48
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐿 ) ( .r ‘ 𝑈 ) ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑈 ) ) |
50 |
38 49
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐿 ) · ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑈 ) ) |
51 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) |
52 |
14 15
|
ring0cl |
⊢ ( 𝑈 ∈ Ring → ( 0g ‘ 𝑈 ) ∈ ( Base ‘ 𝑈 ) ) |
53 |
21 52
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ ( Base ‘ 𝑈 ) ) |
54 |
53 45
|
eleqtrrd |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ 𝑅 ) |
55 |
1 16 3 4 51 26 7 8 9 54 13
|
evlsscaval |
⊢ ( 𝜑 → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) = ( 0g ‘ 𝑈 ) ) ) |
56 |
55
|
simprd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) = ( 0g ‘ 𝑈 ) ) |
57 |
56
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( 0g ‘ 𝑈 ) ) ) |
58 |
4
|
fvexi |
⊢ 𝐾 ∈ V |
59 |
58
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
60 |
8
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
61 |
4 5
|
ringcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) → ( 𝑗 · 𝑘 ) ∈ 𝐾 ) |
62 |
60 61
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) → ( 𝑗 · 𝑘 ) ∈ 𝐾 ) |
63 |
62
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑗 · 𝑘 ) ∈ 𝐾 ) |
64 |
4
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
65 |
9 64
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ 𝐾 ) |
66 |
65 10
|
sseldd |
⊢ ( 𝜑 → 𝐿 ∈ 𝐾 ) |
67 |
|
fconst6g |
⊢ ( 𝐿 ∈ 𝐾 → ( 𝐼 × { 𝐿 } ) : 𝐼 ⟶ 𝐾 ) |
68 |
66 67
|
syl |
⊢ ( 𝜑 → ( 𝐼 × { 𝐿 } ) : 𝐼 ⟶ 𝐾 ) |
69 |
|
elmapi |
⊢ ( 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
70 |
13 69
|
syl |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐾 ) |
71 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
72 |
63 68 70 7 7 71
|
off |
⊢ ( 𝜑 → ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) : 𝐼 ⟶ 𝐾 ) |
73 |
59 7 72
|
elmapdd |
⊢ ( 𝜑 → ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ∈ ( 𝐾 ↑m 𝐼 ) ) |
74 |
1 16 3 4 51 26 7 8 9 54 73
|
evlsscaval |
⊢ ( 𝜑 → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( 0g ‘ 𝑈 ) ) ) |
75 |
74
|
simprd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( 0g ‘ 𝑈 ) ) |
76 |
50 57 75
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) ) ) |
77 |
|
fvex |
⊢ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ∈ V |
78 |
|
fveq2 |
⊢ ( 𝑓 = ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) → ( 𝑄 ‘ 𝑓 ) = ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ) |
79 |
78
|
fveq1d |
⊢ ( 𝑓 = ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) → ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
80 |
78
|
fveq1d |
⊢ ( 𝑓 = ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) → ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) ) |
81 |
80
|
oveq2d |
⊢ ( 𝑓 = ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) ) ) |
82 |
79 81
|
eqeq12d |
⊢ ( 𝑓 = ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) → ( ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) ↔ ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) ) ) ) |
83 |
77 82
|
elab |
⊢ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ↔ ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) ) ) |
84 |
76 83
|
sylibr |
⊢ ( 𝜑 → ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) |
85 |
35 84
|
eqeltrd |
⊢ ( 𝜑 → ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑈 ) } ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) |
86 |
3
|
subrgcrng |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing ) |
87 |
8 9 86
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
88 |
16
|
mplassa |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑈 ∈ CRing ) → ( 𝐼 mPoly 𝑈 ) ∈ AssAlg ) |
89 |
7 87 88
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 mPoly 𝑈 ) ∈ AssAlg ) |
90 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝐼 mPoly 𝑈 ) ∈ AssAlg ) |
91 |
23
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) ) |
92 |
91
|
eleq2d |
⊢ ( 𝜑 → ( 𝑏 ∈ ( Base ‘ 𝑈 ) ↔ 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) ) ) |
93 |
92
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) → 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) ) |
94 |
93
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) ) |
95 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ∈ V ) |
96 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
97 |
96
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
98 |
97
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
99 |
|
eqid |
⊢ ( 1r ‘ 𝑈 ) = ( 1r ‘ 𝑈 ) |
100 |
14 99
|
ringidcl |
⊢ ( 𝑈 ∈ Ring → ( 1r ‘ 𝑈 ) ∈ ( Base ‘ 𝑈 ) ) |
101 |
21 100
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑈 ) ∈ ( Base ‘ 𝑈 ) ) |
102 |
101 53
|
ifcld |
⊢ ( 𝜑 → if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ∈ ( Base ‘ 𝑈 ) ) |
103 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ∈ ( Base ‘ 𝑈 ) ) |
104 |
103
|
fmpttd |
⊢ ( 𝜑 → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑈 ) ) |
105 |
95 98 104
|
elmapdd |
⊢ ( 𝜑 → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( ( Base ‘ 𝑈 ) ↑m { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ) |
106 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑈 ) = ( 𝐼 mPwSer 𝑈 ) |
107 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) |
108 |
106 14 18 107 7
|
psrbas |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) = ( ( Base ‘ 𝑈 ) ↑m { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ) |
109 |
105 108
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) ) |
110 |
97
|
mptex |
⊢ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ V |
111 |
110
|
a1i |
⊢ ( 𝜑 → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ V ) |
112 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ V ) |
113 |
|
funmpt |
⊢ Fun ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) |
114 |
113
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) |
115 |
|
snfi |
⊢ { 𝑎 } ∈ Fin |
116 |
115
|
a1i |
⊢ ( 𝜑 → { 𝑎 } ∈ Fin ) |
117 |
|
eldifsnneq |
⊢ ( 𝑤 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑎 } ) → ¬ 𝑤 = 𝑎 ) |
118 |
117
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑎 } ) ) → ¬ 𝑤 = 𝑎 ) |
119 |
118
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑎 } ) ) → if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑈 ) ) |
120 |
119 98
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) supp ( 0g ‘ 𝑈 ) ) ⊆ { 𝑎 } ) |
121 |
116 120
|
ssfid |
⊢ ( 𝜑 → ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) supp ( 0g ‘ 𝑈 ) ) ∈ Fin ) |
122 |
111 112 114 121
|
isfsuppd |
⊢ ( 𝜑 → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) finSupp ( 0g ‘ 𝑈 ) ) |
123 |
16 106 107 15 51
|
mplelbas |
⊢ ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ↔ ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) ∧ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) finSupp ( 0g ‘ 𝑈 ) ) ) |
124 |
109 122 123
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
125 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
126 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) = ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
127 |
|
eqid |
⊢ ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) = ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) |
128 |
|
eqid |
⊢ ( ·𝑠 ‘ ( 𝐼 mPoly 𝑈 ) ) = ( ·𝑠 ‘ ( 𝐼 mPoly 𝑈 ) ) |
129 |
26 27 126 51 127 128
|
asclmul1 |
⊢ ( ( ( 𝐼 mPoly 𝑈 ) ∈ AssAlg ∧ 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) ∧ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) = ( 𝑏 ( ·𝑠 ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) |
130 |
90 94 125 129
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) = ( 𝑏 ( ·𝑠 ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) |
131 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑈 ) ) |
132 |
16 128 14 51 47 18 131 125
|
mplvsca |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑏 ( ·𝑠 ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) = ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑏 } ) ∘f ( .r ‘ 𝑈 ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) |
133 |
130 132
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) = ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑏 } ) ∘f ( .r ‘ 𝑈 ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) |
134 |
|
vex |
⊢ 𝑏 ∈ V |
135 |
|
fnconstg |
⊢ ( 𝑏 ∈ V → ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑏 } ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
136 |
134 135
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑏 } ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
137 |
|
fvex |
⊢ ( 1r ‘ 𝑈 ) ∈ V |
138 |
|
fvex |
⊢ ( 0g ‘ 𝑈 ) ∈ V |
139 |
137 138
|
ifex |
⊢ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ∈ V |
140 |
|
eqid |
⊢ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) = ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) |
141 |
139 140
|
fnmpti |
⊢ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
142 |
141
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
143 |
97
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
144 |
|
inidm |
⊢ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∩ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
145 |
134
|
fvconst2 |
⊢ ( 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑏 } ) ‘ 𝑠 ) = 𝑏 ) |
146 |
145
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑏 } ) ‘ 𝑠 ) = 𝑏 ) |
147 |
|
equequ1 |
⊢ ( 𝑤 = 𝑠 → ( 𝑤 = 𝑎 ↔ 𝑠 = 𝑎 ) ) |
148 |
147
|
ifbid |
⊢ ( 𝑤 = 𝑠 → if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) = if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) |
149 |
137 138
|
ifex |
⊢ if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ∈ V |
150 |
148 140 149
|
fvmpt |
⊢ ( 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ‘ 𝑠 ) = if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) |
151 |
150
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ‘ 𝑠 ) = if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) |
152 |
136 142 143 143 144 146 151
|
offval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑏 } ) ∘f ( .r ‘ 𝑈 ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) = ( 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ( .r ‘ 𝑈 ) if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) |
153 |
|
ovif2 |
⊢ ( 𝑏 ( .r ‘ 𝑈 ) if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) = if ( 𝑠 = 𝑎 , ( 𝑏 ( .r ‘ 𝑈 ) ( 1r ‘ 𝑈 ) ) , ( 𝑏 ( .r ‘ 𝑈 ) ( 0g ‘ 𝑈 ) ) ) |
154 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑈 ∈ Ring ) |
155 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑏 ∈ ( Base ‘ 𝑈 ) ) |
156 |
14 47 99
|
ringridm |
⊢ ( ( 𝑈 ∈ Ring ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑏 ( .r ‘ 𝑈 ) ( 1r ‘ 𝑈 ) ) = 𝑏 ) |
157 |
154 155 156
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑏 ( .r ‘ 𝑈 ) ( 1r ‘ 𝑈 ) ) = 𝑏 ) |
158 |
14 47 15
|
ringrz |
⊢ ( ( 𝑈 ∈ Ring ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑏 ( .r ‘ 𝑈 ) ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑈 ) ) |
159 |
154 155 158
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑏 ( .r ‘ 𝑈 ) ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑈 ) ) |
160 |
157 159
|
ifeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → if ( 𝑠 = 𝑎 , ( 𝑏 ( .r ‘ 𝑈 ) ( 1r ‘ 𝑈 ) ) , ( 𝑏 ( .r ‘ 𝑈 ) ( 0g ‘ 𝑈 ) ) ) = if ( 𝑠 = 𝑎 , 𝑏 , ( 0g ‘ 𝑈 ) ) ) |
161 |
153 160
|
syl5eq |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑏 ( .r ‘ 𝑈 ) if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) = if ( 𝑠 = 𝑎 , 𝑏 , ( 0g ‘ 𝑈 ) ) ) |
162 |
161
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ( .r ‘ 𝑈 ) if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) = ( 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑠 = 𝑎 , 𝑏 , ( 0g ‘ 𝑈 ) ) ) ) |
163 |
133 152 162
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) = ( 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑠 = 𝑎 , 𝑏 , ( 0g ‘ 𝑈 ) ) ) ) |
164 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝐼 ∈ 𝑉 ) |
165 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑆 ∈ CRing ) |
166 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
167 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ∈ ( 𝐾 ↑m 𝐼 ) ) |
168 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑈 ∈ Ring ) |
169 |
16 51 14 26 164 168
|
mplasclf |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
170 |
169 131
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
171 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
172 |
170 171
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) ) |
173 |
|
elrabi |
⊢ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } → 𝑎 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
174 |
173
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑎 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
175 |
1 16 3 51 4 39 6 15 99 18 140 164 165 166 167 174
|
evlsbagval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) ) ) ) |
176 |
1 16 3 4 51 164 165 166 167 172 175 127 5
|
evlsmulval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) ) ) ) ) |
177 |
176
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) ) ) ) |
178 |
39
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
179 |
60 178
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
180 |
39 4
|
mgpbas |
⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
181 |
180 6
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ 𝐾 ) → ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ) |
182 |
179 11 66 181
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ) |
183 |
182
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ) |
184 |
45 65
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
185 |
184
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) → 𝑏 ∈ 𝐾 ) |
186 |
185
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑏 ∈ 𝐾 ) |
187 |
4 5
|
crngcom |
⊢ ( ( 𝑆 ∈ CRing ∧ ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( ( 𝑁 ↑ 𝐿 ) · 𝑏 ) = ( 𝑏 · ( 𝑁 ↑ 𝐿 ) ) ) |
188 |
165 183 186 187
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑁 ↑ 𝐿 ) · 𝑏 ) = ( 𝑏 · ( 𝑁 ↑ 𝐿 ) ) ) |
189 |
188
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( 𝑁 ↑ 𝐿 ) · 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 𝑏 · ( 𝑁 ↑ 𝐿 ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
190 |
165
|
crngringd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑆 ∈ Ring ) |
191 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
192 |
39 191
|
ringidval |
⊢ ( 1r ‘ 𝑆 ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) |
193 |
39
|
crngmgp |
⊢ ( 𝑆 ∈ CRing → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
194 |
8 193
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
195 |
194
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
196 |
179
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
197 |
|
elrabi |
⊢ ( 𝑎 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ) |
198 |
|
elmapi |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) → 𝑎 : 𝐼 ⟶ ℕ0 ) |
199 |
173 197 198
|
3syl |
⊢ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } → 𝑎 : 𝐼 ⟶ ℕ0 ) |
200 |
199
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝑎 : 𝐼 ⟶ ℕ0 ) |
201 |
200
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑎 : 𝐼 ⟶ ℕ0 ) |
202 |
201
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑣 ) ∈ ℕ0 ) |
203 |
70
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
204 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → 𝑣 ∈ 𝐼 ) |
205 |
203 204
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 ) |
206 |
180 6
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ Mnd ∧ ( 𝑎 ‘ 𝑣 ) ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ∈ 𝐾 ) |
207 |
196 202 205 206
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ∈ 𝐾 ) |
208 |
207
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) : 𝐼 ⟶ 𝐾 ) |
209 |
18
|
psrbagfsupp |
⊢ ( 𝑎 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑎 finSupp 0 ) |
210 |
209
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑎 finSupp 0 ) |
211 |
210
|
fsuppimpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑎 supp 0 ) ∈ Fin ) |
212 |
173 211
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑎 supp 0 ) ∈ Fin ) |
213 |
212
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑎 supp 0 ) ∈ Fin ) |
214 |
201
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑎 = ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) |
215 |
214
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑎 supp 0 ) = ( ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) supp 0 ) ) |
216 |
|
ssidd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑎 supp 0 ) ⊆ ( 𝑎 supp 0 ) ) |
217 |
215 216
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) supp 0 ) ⊆ ( 𝑎 supp 0 ) ) |
218 |
180 192 6
|
mulg0 |
⊢ ( 𝑘 ∈ 𝐾 → ( 0 ↑ 𝑘 ) = ( 1r ‘ 𝑆 ) ) |
219 |
218
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑘 ∈ 𝐾 ) → ( 0 ↑ 𝑘 ) = ( 1r ‘ 𝑆 ) ) |
220 |
|
c0ex |
⊢ 0 ∈ V |
221 |
220
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 0 ∈ V ) |
222 |
217 219 202 205 221
|
suppssov1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) supp ( 1r ‘ 𝑆 ) ) ⊆ ( 𝑎 supp 0 ) ) |
223 |
213 222
|
ssfid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) supp ( 1r ‘ 𝑆 ) ) ∈ Fin ) |
224 |
180 192 195 164 208 223
|
gsumcl2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
225 |
4 5
|
ringass |
⊢ ( ( 𝑆 ∈ Ring ∧ ( ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) ) → ( ( ( 𝑁 ↑ 𝐿 ) · 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( 𝑏 · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
226 |
190 183 186 224 225
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( 𝑁 ↑ 𝐿 ) · 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( 𝑏 · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
227 |
4 5
|
ringass |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝑏 ∈ 𝐾 ∧ ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ∧ ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) ) → ( ( 𝑏 · ( 𝑁 ↑ 𝐿 ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 𝑏 · ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
228 |
190 186 183 224 227
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑏 · ( 𝑁 ↑ 𝐿 ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 𝑏 · ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
229 |
189 226 228
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑁 ↑ 𝐿 ) · ( 𝑏 · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) = ( 𝑏 · ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
230 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
231 |
45
|
eleq2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝑅 ↔ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) |
232 |
231
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) → 𝑏 ∈ 𝑅 ) |
233 |
232
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑏 ∈ 𝑅 ) |
234 |
1 16 3 4 51 26 164 165 166 233 230
|
evlsscaval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ 𝐴 ) = 𝑏 ) ) |
235 |
1 16 3 51 4 39 6 15 99 18 140 164 165 166 230 174
|
evlsbagval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ‘ 𝐴 ) = ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
236 |
1 16 3 4 51 164 165 166 230 234 235 127 5
|
evlsmulval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) = ( 𝑏 · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
237 |
236
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) = ( 𝑏 · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
238 |
237
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( 𝑏 · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
239 |
1 16 3 4 51 26 164 165 166 233 167
|
evlsscaval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = 𝑏 ) ) |
240 |
239
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = 𝑏 ) |
241 |
|
fconst6g |
⊢ ( 𝐿 ∈ 𝑅 → ( 𝐼 × { 𝐿 } ) : 𝐼 ⟶ 𝑅 ) |
242 |
10 241
|
syl |
⊢ ( 𝜑 → ( 𝐼 × { 𝐿 } ) : 𝐼 ⟶ 𝑅 ) |
243 |
242
|
ffnd |
⊢ ( 𝜑 → ( 𝐼 × { 𝐿 } ) Fn 𝐼 ) |
244 |
243
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝐼 × { 𝐿 } ) Fn 𝐼 ) |
245 |
70
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn 𝐼 ) |
246 |
245
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝐴 Fn 𝐼 ) |
247 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → 𝐿 ∈ 𝑅 ) |
248 |
|
fvconst2g |
⊢ ( ( 𝐿 ∈ 𝑅 ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝐼 × { 𝐿 } ) ‘ 𝑣 ) = 𝐿 ) |
249 |
247 204 248
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝐼 × { 𝐿 } ) ‘ 𝑣 ) = 𝐿 ) |
250 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑣 ) = ( 𝐴 ‘ 𝑣 ) ) |
251 |
244 246 164 164 71 249 250
|
ofval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) = ( 𝐿 · ( 𝐴 ‘ 𝑣 ) ) ) |
252 |
251
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) = ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐿 · ( 𝐴 ‘ 𝑣 ) ) ) ) |
253 |
194
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
254 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → 𝐿 ∈ 𝐾 ) |
255 |
39 5
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) |
256 |
180 6 255
|
mulgnn0di |
⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ CMnd ∧ ( ( 𝑎 ‘ 𝑣 ) ∈ ℕ0 ∧ 𝐿 ∈ 𝐾 ∧ ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 ) ) → ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐿 · ( 𝐴 ‘ 𝑣 ) ) ) = ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) |
257 |
253 202 254 205 256
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐿 · ( 𝐴 ‘ 𝑣 ) ) ) = ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) |
258 |
252 257
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) = ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) |
259 |
258
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) = ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) |
260 |
259
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) ) = ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
261 |
194
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
262 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝐼 ∈ 𝑉 ) |
263 |
179
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑣 ∈ 𝐼 ) → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
264 |
200
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑣 ) ∈ ℕ0 ) |
265 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑣 ∈ 𝐼 ) → 𝐿 ∈ 𝐾 ) |
266 |
180 6
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ Mnd ∧ ( 𝑎 ‘ 𝑣 ) ∈ ℕ0 ∧ 𝐿 ∈ 𝐾 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ∈ 𝐾 ) |
267 |
263 264 265 266
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ∈ 𝐾 ) |
268 |
70
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 ) |
269 |
268
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 ) |
270 |
263 264 269 206
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ∈ 𝐾 ) |
271 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) = ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) ) |
272 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) = ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) |
273 |
262
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) ∈ V ) |
274 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 1r ‘ 𝑆 ) ∈ V ) |
275 |
|
funmpt |
⊢ Fun ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) |
276 |
275
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → Fun ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) ) |
277 |
200
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝑎 = ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) |
278 |
277
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑎 supp 0 ) = ( ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) supp 0 ) ) |
279 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑎 supp 0 ) ⊆ ( 𝑎 supp 0 ) ) |
280 |
278 279
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) supp 0 ) ⊆ ( 𝑎 supp 0 ) ) |
281 |
218
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑘 ∈ 𝐾 ) → ( 0 ↑ 𝑘 ) = ( 1r ‘ 𝑆 ) ) |
282 |
220
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 0 ∈ V ) |
283 |
280 281 264 265 282
|
suppssov1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) supp ( 1r ‘ 𝑆 ) ) ⊆ ( 𝑎 supp 0 ) ) |
284 |
212 283
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) supp ( 1r ‘ 𝑆 ) ) ∈ Fin ) |
285 |
273 274 276 284
|
isfsuppd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) finSupp ( 1r ‘ 𝑆 ) ) |
286 |
262
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ∈ V ) |
287 |
|
funmpt |
⊢ Fun ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) |
288 |
287
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → Fun ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) |
289 |
280 281 264 269 282
|
suppssov1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) supp ( 1r ‘ 𝑆 ) ) ⊆ ( 𝑎 supp 0 ) ) |
290 |
212 289
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) supp ( 1r ‘ 𝑆 ) ) ∈ Fin ) |
291 |
286 274 288 290
|
isfsuppd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) finSupp ( 1r ‘ 𝑆 ) ) |
292 |
180 192 255 261 262 267 270 271 272 285 291
|
gsummptfsadd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
293 |
18 19 180 6 7 179 66 11
|
mhphflem |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) ) = ( 𝑁 ↑ 𝐿 ) ) |
294 |
293
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
295 |
292 294
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
296 |
295
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
297 |
260 296
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
298 |
240 297
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) ) ) = ( 𝑏 · ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
299 |
229 238 298
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) ) ) |
300 |
177 299
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) ) ) |
301 |
|
ovex |
⊢ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ∈ V |
302 |
|
fveq2 |
⊢ ( 𝑓 = ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑄 ‘ 𝑓 ) = ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ) |
303 |
302
|
fveq1d |
⊢ ( 𝑓 = ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) → ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
304 |
302
|
fveq1d |
⊢ ( 𝑓 = ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) → ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) ) |
305 |
304
|
oveq2d |
⊢ ( 𝑓 = ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) ) ) |
306 |
303 305
|
eqeq12d |
⊢ ( 𝑓 = ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) → ( ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) ↔ ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) ) ) ) |
307 |
301 306
|
elab |
⊢ ( ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ↔ ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) ) ) |
308 |
300 307
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) |
309 |
163 308
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑠 = 𝑎 , 𝑏 , ( 0g ‘ 𝑈 ) ) ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) |
310 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ↔ ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ 𝑥 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ) |
311 |
|
vex |
⊢ 𝑥 ∈ V |
312 |
|
fveq2 |
⊢ ( 𝑓 = 𝑥 → ( 𝑄 ‘ 𝑓 ) = ( 𝑄 ‘ 𝑥 ) ) |
313 |
312
|
fveq1d |
⊢ ( 𝑓 = 𝑥 → ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
314 |
312
|
fveq1d |
⊢ ( 𝑓 = 𝑥 → ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) |
315 |
314
|
oveq2d |
⊢ ( 𝑓 = 𝑥 → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
316 |
313 315
|
eqeq12d |
⊢ ( 𝑓 = 𝑥 → ( ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) ↔ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) |
317 |
311 316
|
elab |
⊢ ( 𝑥 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ↔ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
318 |
317
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ 𝑥 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ↔ ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) |
319 |
310 318
|
bitri |
⊢ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ↔ ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) |
320 |
|
elin |
⊢ ( 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ↔ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ 𝑦 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ) |
321 |
|
vex |
⊢ 𝑦 ∈ V |
322 |
|
fveq2 |
⊢ ( 𝑓 = 𝑦 → ( 𝑄 ‘ 𝑓 ) = ( 𝑄 ‘ 𝑦 ) ) |
323 |
322
|
fveq1d |
⊢ ( 𝑓 = 𝑦 → ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
324 |
322
|
fveq1d |
⊢ ( 𝑓 = 𝑦 → ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) |
325 |
324
|
oveq2d |
⊢ ( 𝑓 = 𝑦 → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) |
326 |
323 325
|
eqeq12d |
⊢ ( 𝑓 = 𝑦 → ( ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) ↔ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
327 |
321 326
|
elab |
⊢ ( 𝑦 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ↔ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) |
328 |
327
|
anbi2i |
⊢ ( ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ 𝑦 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ↔ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
329 |
320 328
|
bitri |
⊢ ( 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ↔ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
330 |
319 329
|
anbi12i |
⊢ ( ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ) ↔ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) |
331 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝑆 ∈ Ring ) |
332 |
182
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ) |
333 |
|
eqid |
⊢ ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) = ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) |
334 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) ) = ( Base ‘ ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) ) |
335 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝑆 ∈ CRing ) |
336 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ∈ V ) |
337 |
|
eqid |
⊢ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) |
338 |
1 16 3 337 4
|
evlsrhm |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( ( 𝐼 mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
339 |
7 8 9 338
|
syl3anc |
⊢ ( 𝜑 → 𝑄 ∈ ( ( 𝐼 mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
340 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
341 |
51 340
|
rhmf |
⊢ ( 𝑄 ∈ ( ( 𝐼 mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 : ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
342 |
339 341
|
syl |
⊢ ( 𝜑 → 𝑄 : ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
343 |
342
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝑄 : ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
344 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝐼 ∈ 𝑉 ) |
345 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑈 ∈ Ring ) |
346 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
347 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ) |
348 |
2 16 51 344 345 346 347
|
mhpmpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑥 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
349 |
348
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) → 𝑥 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
350 |
349
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝑥 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
351 |
343 350
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑄 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
352 |
|
eqid |
⊢ ( 𝑆 ↑s 𝐼 ) = ( 𝑆 ↑s 𝐼 ) |
353 |
352 4
|
pwsbas |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝐼 ∈ 𝑉 ) → ( 𝐾 ↑m 𝐼 ) = ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) |
354 |
8 7 353
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) = ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) |
355 |
354
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) ) |
356 |
355
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) ) ) |
357 |
356
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) ) ) |
358 |
351 357
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑄 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) ) ) |
359 |
333 4 334 335 336 358
|
pwselbas |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑄 ‘ 𝑥 ) : ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ⟶ 𝐾 ) |
360 |
13 354
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) |
361 |
360
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝐴 ∈ ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) |
362 |
359 361
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ∈ 𝐾 ) |
363 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝐼 ∈ 𝑉 ) |
364 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑈 ∈ Ring ) |
365 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
366 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ) |
367 |
2 16 51 363 364 365 366
|
mhpmpl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑦 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
368 |
367
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) → 𝑦 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
369 |
368
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝑦 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
370 |
343 369
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑄 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
371 |
370 357
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑄 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) ) ) |
372 |
333 4 334 335 336 371
|
pwselbas |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑄 ‘ 𝑦 ) : ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ⟶ 𝐾 ) |
373 |
372 361
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ∈ 𝐾 ) |
374 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
375 |
4 374 5
|
ringdi |
⊢ ( ( 𝑆 ∈ Ring ∧ ( ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ∈ 𝐾 ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ∈ 𝐾 ) ) → ( ( 𝑁 ↑ 𝐿 ) · ( ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ( +g ‘ 𝑆 ) ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) = ( ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ( +g ‘ 𝑆 ) ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
376 |
331 332 362 373 375
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑁 ↑ 𝐿 ) · ( ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ( +g ‘ 𝑆 ) ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) = ( ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ( +g ‘ 𝑆 ) ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
377 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝐼 ∈ 𝑉 ) |
378 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
379 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
380 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) → ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) |
381 |
348 380
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) → ( 𝑥 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
382 |
381
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑥 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
383 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) → ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) |
384 |
367 383
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) → ( 𝑦 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) |
385 |
384
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑦 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) |
386 |
1 16 3 4 51 377 335 378 379 382 385 17 374
|
evlsaddval |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ( +g ‘ 𝑆 ) ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
387 |
386
|
simprd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ( +g ‘ 𝑆 ) ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) |
388 |
387
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ( +g ‘ 𝑆 ) ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
389 |
58
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝐾 ∈ V ) |
390 |
63
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑗 · 𝑘 ) ∈ 𝐾 ) |
391 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝐼 × { 𝐿 } ) : 𝐼 ⟶ 𝐾 ) |
392 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
393 |
390 391 392 377 377 71
|
off |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) : 𝐼 ⟶ 𝐾 ) |
394 |
389 377 393
|
elmapdd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ∈ ( 𝐾 ↑m 𝐼 ) ) |
395 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) → ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
396 |
348 395
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) → ( 𝑥 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) |
397 |
396
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑥 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) |
398 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) → ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) |
399 |
367 398
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) → ( 𝑦 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
400 |
399
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑦 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
401 |
1 16 3 4 51 377 335 378 394 397 400 17 374
|
evlsaddval |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ( +g ‘ 𝑆 ) ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) |
402 |
401
|
simprd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ( +g ‘ 𝑆 ) ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
403 |
376 388 402
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) ) ) |
404 |
|
ovex |
⊢ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ∈ V |
405 |
|
fveq2 |
⊢ ( 𝑓 = ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) → ( 𝑄 ‘ 𝑓 ) = ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ) |
406 |
405
|
fveq1d |
⊢ ( 𝑓 = ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) → ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
407 |
405
|
fveq1d |
⊢ ( 𝑓 = ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) → ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) ) |
408 |
407
|
oveq2d |
⊢ ( 𝑓 = ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) ) ) |
409 |
406 408
|
eqeq12d |
⊢ ( 𝑓 = ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) → ( ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) ↔ ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) ) ) ) |
410 |
404 409
|
elab |
⊢ ( ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ↔ ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) ) ) |
411 |
403 410
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) |
412 |
330 411
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ) ) → ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) |
413 |
2 14 15 16 17 18 19 7 22 11 12 85 309 412
|
mhpind |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) |
414 |
|
fveq2 |
⊢ ( 𝑓 = 𝑋 → ( 𝑄 ‘ 𝑓 ) = ( 𝑄 ‘ 𝑋 ) ) |
415 |
414
|
fveq1d |
⊢ ( 𝑓 = 𝑋 → ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
416 |
414
|
fveq1d |
⊢ ( 𝑓 = 𝑋 → ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) |
417 |
416
|
oveq2d |
⊢ ( 𝑓 = 𝑋 → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) |
418 |
415 417
|
eqeq12d |
⊢ ( 𝑓 = 𝑋 → ( ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) ↔ ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) ) |
419 |
418
|
elabg |
⊢ ( 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) → ( 𝑋 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ↔ ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) ) |
420 |
12 419
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ↔ ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) ) |
421 |
413 420
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) |