Step |
Hyp |
Ref |
Expression |
1 |
|
mhphf.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
mhphf.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑈 ) |
3 |
|
mhphf.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
4 |
|
mhphf.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
5 |
|
mhphf.m |
⊢ · = ( .r ‘ 𝑆 ) |
6 |
|
mhphf.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
7 |
|
mhphf.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
8 |
|
mhphf.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
9 |
|
mhphf.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
10 |
|
mhphf.l |
⊢ ( 𝜑 → 𝐿 ∈ 𝑅 ) |
11 |
|
mhphf.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
12 |
|
mhphf.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) |
13 |
|
mhphf.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
16 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑈 ) = ( 𝐼 mPoly 𝑈 ) |
17 |
|
eqid |
⊢ ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) = ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) |
18 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
19 |
|
eqid |
⊢ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } = { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } |
20 |
3
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
21 |
9 20
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
22 |
21
|
ringgrpd |
⊢ ( 𝜑 → 𝑈 ∈ Grp ) |
23 |
|
eqid |
⊢ ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) = ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) |
24 |
|
eqid |
⊢ ( 0g ‘ ( 𝐼 mPoly 𝑈 ) ) = ( 0g ‘ ( 𝐼 mPoly 𝑈 ) ) |
25 |
3
|
subrgcrng |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing ) |
26 |
8 9 25
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
27 |
16 23 15 24 7 26
|
mplascl0 |
⊢ ( 𝜑 → ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) = ( 0g ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
28 |
16 18 15 24 7 22
|
mpl0 |
⊢ ( 𝜑 → ( 0g ‘ ( 𝐼 mPoly 𝑈 ) ) = ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑈 ) } ) ) |
29 |
27 28
|
eqtr2d |
⊢ ( 𝜑 → ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑈 ) } ) = ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) |
30 |
3 5
|
ressmulr |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → · = ( .r ‘ 𝑈 ) ) |
31 |
9 30
|
syl |
⊢ ( 𝜑 → · = ( .r ‘ 𝑈 ) ) |
32 |
31
|
oveqd |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐿 ) · ( 0g ‘ 𝑈 ) ) = ( ( 𝑁 ↑ 𝐿 ) ( .r ‘ 𝑈 ) ( 0g ‘ 𝑈 ) ) ) |
33 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
34 |
33
|
subrgsubm |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) |
35 |
9 34
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) |
36 |
6
|
submmulgcl |
⊢ ( ( 𝑅 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ 𝑅 ) → ( 𝑁 ↑ 𝐿 ) ∈ 𝑅 ) |
37 |
35 11 10 36
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐿 ) ∈ 𝑅 ) |
38 |
3
|
subrgbas |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
39 |
9 38
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
40 |
37 39
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐿 ) ∈ ( Base ‘ 𝑈 ) ) |
41 |
|
eqid |
⊢ ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) |
42 |
14 41 15
|
ringrz |
⊢ ( ( 𝑈 ∈ Ring ∧ ( 𝑁 ↑ 𝐿 ) ∈ ( Base ‘ 𝑈 ) ) → ( ( 𝑁 ↑ 𝐿 ) ( .r ‘ 𝑈 ) ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑈 ) ) |
43 |
21 40 42
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐿 ) ( .r ‘ 𝑈 ) ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑈 ) ) |
44 |
32 43
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐿 ) · ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑈 ) ) |
45 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) |
46 |
14 15
|
ring0cl |
⊢ ( 𝑈 ∈ Ring → ( 0g ‘ 𝑈 ) ∈ ( Base ‘ 𝑈 ) ) |
47 |
21 46
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ ( Base ‘ 𝑈 ) ) |
48 |
47 39
|
eleqtrrd |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ 𝑅 ) |
49 |
1 16 3 4 45 23 7 8 9 48 13
|
evlsscaval |
⊢ ( 𝜑 → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) = ( 0g ‘ 𝑈 ) ) ) |
50 |
49
|
simprd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) = ( 0g ‘ 𝑈 ) ) |
51 |
50
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( 0g ‘ 𝑈 ) ) ) |
52 |
4
|
fvexi |
⊢ 𝐾 ∈ V |
53 |
52
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
54 |
8
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
55 |
4 5
|
ringcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) → ( 𝑗 · 𝑘 ) ∈ 𝐾 ) |
56 |
54 55
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) → ( 𝑗 · 𝑘 ) ∈ 𝐾 ) |
57 |
56
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑗 · 𝑘 ) ∈ 𝐾 ) |
58 |
4
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
59 |
9 58
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ 𝐾 ) |
60 |
59 10
|
sseldd |
⊢ ( 𝜑 → 𝐿 ∈ 𝐾 ) |
61 |
|
fconst6g |
⊢ ( 𝐿 ∈ 𝐾 → ( 𝐼 × { 𝐿 } ) : 𝐼 ⟶ 𝐾 ) |
62 |
60 61
|
syl |
⊢ ( 𝜑 → ( 𝐼 × { 𝐿 } ) : 𝐼 ⟶ 𝐾 ) |
63 |
|
elmapi |
⊢ ( 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
64 |
13 63
|
syl |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐾 ) |
65 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
66 |
57 62 64 7 7 65
|
off |
⊢ ( 𝜑 → ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) : 𝐼 ⟶ 𝐾 ) |
67 |
53 7 66
|
elmapdd |
⊢ ( 𝜑 → ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ∈ ( 𝐾 ↑m 𝐼 ) ) |
68 |
1 16 3 4 45 23 7 8 9 48 67
|
evlsscaval |
⊢ ( 𝜑 → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( 0g ‘ 𝑈 ) ) ) |
69 |
68
|
simprd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( 0g ‘ 𝑈 ) ) |
70 |
44 51 69
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) ) ) |
71 |
|
fvex |
⊢ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ∈ V |
72 |
|
fveq2 |
⊢ ( 𝑓 = ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) → ( 𝑄 ‘ 𝑓 ) = ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ) |
73 |
72
|
fveq1d |
⊢ ( 𝑓 = ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) → ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
74 |
72
|
fveq1d |
⊢ ( 𝑓 = ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) → ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) ) |
75 |
74
|
oveq2d |
⊢ ( 𝑓 = ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) ) ) |
76 |
73 75
|
eqeq12d |
⊢ ( 𝑓 = ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) → ( ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) ↔ ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) ) ) ) |
77 |
71 76
|
elab |
⊢ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ↔ ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ) ‘ 𝐴 ) ) ) |
78 |
70 77
|
sylibr |
⊢ ( 𝜑 → ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ ( 0g ‘ 𝑈 ) ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) |
79 |
29 78
|
eqeltrd |
⊢ ( 𝜑 → ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑈 ) } ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) |
80 |
16
|
mplassa |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑈 ∈ CRing ) → ( 𝐼 mPoly 𝑈 ) ∈ AssAlg ) |
81 |
7 26 80
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 mPoly 𝑈 ) ∈ AssAlg ) |
82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝐼 mPoly 𝑈 ) ∈ AssAlg ) |
83 |
16 7 21
|
mplsca |
⊢ ( 𝜑 → 𝑈 = ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
84 |
83
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) ) |
85 |
84
|
eleq2d |
⊢ ( 𝜑 → ( 𝑏 ∈ ( Base ‘ 𝑈 ) ↔ 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) ) ) |
86 |
85
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) → 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) ) |
87 |
86
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) ) |
88 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ∈ V ) |
89 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
90 |
89
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
91 |
90
|
a1i |
⊢ ( 𝜑 → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
92 |
|
eqid |
⊢ ( 1r ‘ 𝑈 ) = ( 1r ‘ 𝑈 ) |
93 |
14 92
|
ringidcl |
⊢ ( 𝑈 ∈ Ring → ( 1r ‘ 𝑈 ) ∈ ( Base ‘ 𝑈 ) ) |
94 |
21 93
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑈 ) ∈ ( Base ‘ 𝑈 ) ) |
95 |
94 47
|
ifcld |
⊢ ( 𝜑 → if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ∈ ( Base ‘ 𝑈 ) ) |
96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ∈ ( Base ‘ 𝑈 ) ) |
97 |
96
|
fmpttd |
⊢ ( 𝜑 → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑈 ) ) |
98 |
88 91 97
|
elmapdd |
⊢ ( 𝜑 → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( ( Base ‘ 𝑈 ) ↑m { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ) |
99 |
|
eqid |
⊢ ( 𝐼 mPwSer 𝑈 ) = ( 𝐼 mPwSer 𝑈 ) |
100 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) |
101 |
99 14 18 100 7
|
psrbas |
⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) = ( ( Base ‘ 𝑈 ) ↑m { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) ) |
102 |
98 101
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) ) |
103 |
90
|
mptex |
⊢ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ V |
104 |
103
|
a1i |
⊢ ( 𝜑 → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ V ) |
105 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ V ) |
106 |
|
funmpt |
⊢ Fun ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) |
107 |
106
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) |
108 |
|
snfi |
⊢ { 𝑎 } ∈ Fin |
109 |
108
|
a1i |
⊢ ( 𝜑 → { 𝑎 } ∈ Fin ) |
110 |
|
eldifsnneq |
⊢ ( 𝑤 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑎 } ) → ¬ 𝑤 = 𝑎 ) |
111 |
110
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑎 } ) ) → ¬ 𝑤 = 𝑎 ) |
112 |
111
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∖ { 𝑎 } ) ) → if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑈 ) ) |
113 |
112 91
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) supp ( 0g ‘ 𝑈 ) ) ⊆ { 𝑎 } ) |
114 |
109 113
|
ssfid |
⊢ ( 𝜑 → ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) supp ( 0g ‘ 𝑈 ) ) ∈ Fin ) |
115 |
104 105 107 114
|
isfsuppd |
⊢ ( 𝜑 → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) finSupp ( 0g ‘ 𝑈 ) ) |
116 |
16 99 100 15 45
|
mplelbas |
⊢ ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ↔ ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝑈 ) ) ∧ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) finSupp ( 0g ‘ 𝑈 ) ) ) |
117 |
102 115 116
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
118 |
117
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
119 |
|
eqid |
⊢ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) = ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) |
120 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) = ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
121 |
|
eqid |
⊢ ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) = ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) |
122 |
|
eqid |
⊢ ( ·𝑠 ‘ ( 𝐼 mPoly 𝑈 ) ) = ( ·𝑠 ‘ ( 𝐼 mPoly 𝑈 ) ) |
123 |
23 119 120 45 121 122
|
asclmul1 |
⊢ ( ( ( 𝐼 mPoly 𝑈 ) ∈ AssAlg ∧ 𝑏 ∈ ( Base ‘ ( Scalar ‘ ( 𝐼 mPoly 𝑈 ) ) ) ∧ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) = ( 𝑏 ( ·𝑠 ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) |
124 |
82 87 118 123
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) = ( 𝑏 ( ·𝑠 ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) |
125 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑈 ) ) |
126 |
16 122 14 45 41 18 125 118
|
mplvsca |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑏 ( ·𝑠 ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) = ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑏 } ) ∘f ( .r ‘ 𝑈 ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) |
127 |
124 126
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) = ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑏 } ) ∘f ( .r ‘ 𝑈 ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) |
128 |
|
vex |
⊢ 𝑏 ∈ V |
129 |
|
fnconstg |
⊢ ( 𝑏 ∈ V → ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑏 } ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
130 |
128 129
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑏 } ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
131 |
|
fvex |
⊢ ( 1r ‘ 𝑈 ) ∈ V |
132 |
|
fvex |
⊢ ( 0g ‘ 𝑈 ) ∈ V |
133 |
131 132
|
ifex |
⊢ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ∈ V |
134 |
|
eqid |
⊢ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) = ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) |
135 |
133 134
|
fnmpti |
⊢ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
136 |
135
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) Fn { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
137 |
90
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
138 |
|
inidm |
⊢ ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∩ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
139 |
128
|
fvconst2 |
⊢ ( 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑏 } ) ‘ 𝑠 ) = 𝑏 ) |
140 |
139
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑏 } ) ‘ 𝑠 ) = 𝑏 ) |
141 |
|
equequ1 |
⊢ ( 𝑤 = 𝑠 → ( 𝑤 = 𝑎 ↔ 𝑠 = 𝑎 ) ) |
142 |
141
|
ifbid |
⊢ ( 𝑤 = 𝑠 → if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) = if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) |
143 |
131 132
|
ifex |
⊢ if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ∈ V |
144 |
142 134 143
|
fvmpt |
⊢ ( 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ‘ 𝑠 ) = if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) |
145 |
144
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ‘ 𝑠 ) = if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) |
146 |
130 136 137 137 138 140 145
|
offval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } × { 𝑏 } ) ∘f ( .r ‘ 𝑈 ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) = ( 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ( .r ‘ 𝑈 ) if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) |
147 |
|
ovif2 |
⊢ ( 𝑏 ( .r ‘ 𝑈 ) if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) = if ( 𝑠 = 𝑎 , ( 𝑏 ( .r ‘ 𝑈 ) ( 1r ‘ 𝑈 ) ) , ( 𝑏 ( .r ‘ 𝑈 ) ( 0g ‘ 𝑈 ) ) ) |
148 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑈 ∈ Ring ) |
149 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑏 ∈ ( Base ‘ 𝑈 ) ) |
150 |
14 41 92 148 149
|
ringridmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑏 ( .r ‘ 𝑈 ) ( 1r ‘ 𝑈 ) ) = 𝑏 ) |
151 |
14 41 15
|
ringrz |
⊢ ( ( 𝑈 ∈ Ring ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑏 ( .r ‘ 𝑈 ) ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑈 ) ) |
152 |
148 149 151
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑏 ( .r ‘ 𝑈 ) ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑈 ) ) |
153 |
150 152
|
ifeq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → if ( 𝑠 = 𝑎 , ( 𝑏 ( .r ‘ 𝑈 ) ( 1r ‘ 𝑈 ) ) , ( 𝑏 ( .r ‘ 𝑈 ) ( 0g ‘ 𝑈 ) ) ) = if ( 𝑠 = 𝑎 , 𝑏 , ( 0g ‘ 𝑈 ) ) ) |
154 |
147 153
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑏 ( .r ‘ 𝑈 ) if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) = if ( 𝑠 = 𝑎 , 𝑏 , ( 0g ‘ 𝑈 ) ) ) |
155 |
154
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( 𝑏 ( .r ‘ 𝑈 ) if ( 𝑠 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) = ( 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑠 = 𝑎 , 𝑏 , ( 0g ‘ 𝑈 ) ) ) ) |
156 |
127 146 155
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) = ( 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑠 = 𝑎 , 𝑏 , ( 0g ‘ 𝑈 ) ) ) ) |
157 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝐼 ∈ 𝑉 ) |
158 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑆 ∈ CRing ) |
159 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
160 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ∈ ( 𝐾 ↑m 𝐼 ) ) |
161 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑈 ∈ Ring ) |
162 |
16 45 14 23 157 161
|
mplasclf |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
163 |
162 125
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
164 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
165 |
163 164
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) ) |
166 |
|
elrabi |
⊢ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } → 𝑎 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
167 |
166
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑎 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
168 |
1 16 3 45 4 33 6 15 92 18 134 157 158 159 160 167
|
evlsbagval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) ) ) ) |
169 |
1 16 3 4 45 157 158 159 160 165 168 121 5
|
evlsmulval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) ) ) ) ) |
170 |
169
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) ) ) ) |
171 |
33
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
172 |
54 171
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
173 |
33 4
|
mgpbas |
⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
174 |
173 6
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ 𝐾 ) → ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ) |
175 |
172 11 60 174
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ) |
176 |
175
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ) |
177 |
39 59
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
178 |
177
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) → 𝑏 ∈ 𝐾 ) |
179 |
178
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑏 ∈ 𝐾 ) |
180 |
4 5
|
crngcom |
⊢ ( ( 𝑆 ∈ CRing ∧ ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( ( 𝑁 ↑ 𝐿 ) · 𝑏 ) = ( 𝑏 · ( 𝑁 ↑ 𝐿 ) ) ) |
181 |
158 176 179 180
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑁 ↑ 𝐿 ) · 𝑏 ) = ( 𝑏 · ( 𝑁 ↑ 𝐿 ) ) ) |
182 |
181
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( 𝑁 ↑ 𝐿 ) · 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 𝑏 · ( 𝑁 ↑ 𝐿 ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
183 |
158
|
crngringd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑆 ∈ Ring ) |
184 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
185 |
33 184
|
ringidval |
⊢ ( 1r ‘ 𝑆 ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) |
186 |
33
|
crngmgp |
⊢ ( 𝑆 ∈ CRing → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
187 |
8 186
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
188 |
187
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
189 |
172
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
190 |
|
elrabi |
⊢ ( 𝑎 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ) |
191 |
|
elmapi |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) → 𝑎 : 𝐼 ⟶ ℕ0 ) |
192 |
166 190 191
|
3syl |
⊢ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } → 𝑎 : 𝐼 ⟶ ℕ0 ) |
193 |
192
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝑎 : 𝐼 ⟶ ℕ0 ) |
194 |
193
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑎 : 𝐼 ⟶ ℕ0 ) |
195 |
194
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑣 ) ∈ ℕ0 ) |
196 |
64
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
197 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → 𝑣 ∈ 𝐼 ) |
198 |
196 197
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 ) |
199 |
173 6
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ Mnd ∧ ( 𝑎 ‘ 𝑣 ) ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ∈ 𝐾 ) |
200 |
189 195 198 199
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ∈ 𝐾 ) |
201 |
200
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) : 𝐼 ⟶ 𝐾 ) |
202 |
18
|
psrbagfsupp |
⊢ ( 𝑎 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑎 finSupp 0 ) |
203 |
202
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑎 finSupp 0 ) |
204 |
203
|
fsuppimpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑎 supp 0 ) ∈ Fin ) |
205 |
166 204
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑎 supp 0 ) ∈ Fin ) |
206 |
205
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑎 supp 0 ) ∈ Fin ) |
207 |
194
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑎 = ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) |
208 |
207
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑎 supp 0 ) = ( ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) supp 0 ) ) |
209 |
|
ssidd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑎 supp 0 ) ⊆ ( 𝑎 supp 0 ) ) |
210 |
208 209
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) supp 0 ) ⊆ ( 𝑎 supp 0 ) ) |
211 |
173 185 6
|
mulg0 |
⊢ ( 𝑘 ∈ 𝐾 → ( 0 ↑ 𝑘 ) = ( 1r ‘ 𝑆 ) ) |
212 |
211
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑘 ∈ 𝐾 ) → ( 0 ↑ 𝑘 ) = ( 1r ‘ 𝑆 ) ) |
213 |
|
c0ex |
⊢ 0 ∈ V |
214 |
213
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 0 ∈ V ) |
215 |
210 212 195 198 214
|
suppssov1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) supp ( 1r ‘ 𝑆 ) ) ⊆ ( 𝑎 supp 0 ) ) |
216 |
206 215
|
ssfid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) supp ( 1r ‘ 𝑆 ) ) ∈ Fin ) |
217 |
173 185 188 157 201 216
|
gsumcl2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
218 |
4 5 183 176 179 217
|
ringassd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( 𝑁 ↑ 𝐿 ) · 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( 𝑏 · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
219 |
4 5 183 179 176 217
|
ringassd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑏 · ( 𝑁 ↑ 𝐿 ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 𝑏 · ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
220 |
182 218 219
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑁 ↑ 𝐿 ) · ( 𝑏 · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) = ( 𝑏 · ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
221 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
222 |
39
|
eleq2d |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝑅 ↔ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) |
223 |
222
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) → 𝑏 ∈ 𝑅 ) |
224 |
223
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝑏 ∈ 𝑅 ) |
225 |
1 16 3 4 45 23 157 158 159 224 221
|
evlsscaval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ 𝐴 ) = 𝑏 ) ) |
226 |
1 16 3 45 4 33 6 15 92 18 134 157 158 159 221 167
|
evlsbagval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ‘ 𝐴 ) = ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
227 |
1 16 3 4 45 157 158 159 221 225 226 121 5
|
evlsmulval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) = ( 𝑏 · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
228 |
227
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) = ( 𝑏 · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
229 |
228
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( 𝑏 · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
230 |
1 16 3 4 45 23 157 158 159 224 160
|
evlsscaval |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = 𝑏 ) ) |
231 |
230
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = 𝑏 ) |
232 |
|
fconst6g |
⊢ ( 𝐿 ∈ 𝑅 → ( 𝐼 × { 𝐿 } ) : 𝐼 ⟶ 𝑅 ) |
233 |
10 232
|
syl |
⊢ ( 𝜑 → ( 𝐼 × { 𝐿 } ) : 𝐼 ⟶ 𝑅 ) |
234 |
233
|
ffnd |
⊢ ( 𝜑 → ( 𝐼 × { 𝐿 } ) Fn 𝐼 ) |
235 |
234
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝐼 × { 𝐿 } ) Fn 𝐼 ) |
236 |
64
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn 𝐼 ) |
237 |
236
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → 𝐴 Fn 𝐼 ) |
238 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → 𝐿 ∈ 𝑅 ) |
239 |
|
fvconst2g |
⊢ ( ( 𝐿 ∈ 𝑅 ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝐼 × { 𝐿 } ) ‘ 𝑣 ) = 𝐿 ) |
240 |
238 197 239
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝐼 × { 𝐿 } ) ‘ 𝑣 ) = 𝐿 ) |
241 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑣 ) = ( 𝐴 ‘ 𝑣 ) ) |
242 |
235 237 157 157 65 240 241
|
ofval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) = ( 𝐿 · ( 𝐴 ‘ 𝑣 ) ) ) |
243 |
242
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) = ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐿 · ( 𝐴 ‘ 𝑣 ) ) ) ) |
244 |
187
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
245 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → 𝐿 ∈ 𝐾 ) |
246 |
33 5
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) |
247 |
173 6 246
|
mulgnn0di |
⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ CMnd ∧ ( ( 𝑎 ‘ 𝑣 ) ∈ ℕ0 ∧ 𝐿 ∈ 𝐾 ∧ ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 ) ) → ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐿 · ( 𝐴 ‘ 𝑣 ) ) ) = ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) |
248 |
244 195 245 198 247
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐿 · ( 𝐴 ‘ 𝑣 ) ) ) = ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) |
249 |
243 248
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) = ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) |
250 |
249
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) = ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) |
251 |
250
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) ) = ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
252 |
187
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
253 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝐼 ∈ 𝑉 ) |
254 |
172
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑣 ∈ 𝐼 ) → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
255 |
193
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑣 ) ∈ ℕ0 ) |
256 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑣 ∈ 𝐼 ) → 𝐿 ∈ 𝐾 ) |
257 |
173 6
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ Mnd ∧ ( 𝑎 ‘ 𝑣 ) ∈ ℕ0 ∧ 𝐿 ∈ 𝐾 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ∈ 𝐾 ) |
258 |
254 255 256 257
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ∈ 𝐾 ) |
259 |
64
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 ) |
260 |
259
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 ) |
261 |
254 255 260 199
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ∈ 𝐾 ) |
262 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) = ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) ) |
263 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) = ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) |
264 |
253
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) ∈ V ) |
265 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 1r ‘ 𝑆 ) ∈ V ) |
266 |
|
funmpt |
⊢ Fun ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) |
267 |
266
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → Fun ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) ) |
268 |
193
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝑎 = ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) ) |
269 |
268
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑎 supp 0 ) = ( ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) supp 0 ) ) |
270 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑎 supp 0 ) ⊆ ( 𝑎 supp 0 ) ) |
271 |
269 270
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑣 ∈ 𝐼 ↦ ( 𝑎 ‘ 𝑣 ) ) supp 0 ) ⊆ ( 𝑎 supp 0 ) ) |
272 |
211
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑘 ∈ 𝐾 ) → ( 0 ↑ 𝑘 ) = ( 1r ‘ 𝑆 ) ) |
273 |
213
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 0 ∈ V ) |
274 |
271 272 255 256 273
|
suppssov1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) supp ( 1r ‘ 𝑆 ) ) ⊆ ( 𝑎 supp 0 ) ) |
275 |
205 274
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) supp ( 1r ‘ 𝑆 ) ) ∈ Fin ) |
276 |
264 265 267 275
|
isfsuppd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) finSupp ( 1r ‘ 𝑆 ) ) |
277 |
253
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ∈ V ) |
278 |
|
funmpt |
⊢ Fun ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) |
279 |
278
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → Fun ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) |
280 |
271 272 255 260 273
|
suppssov1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) supp ( 1r ‘ 𝑆 ) ) ⊆ ( 𝑎 supp 0 ) ) |
281 |
205 280
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) supp ( 1r ‘ 𝑆 ) ) ∈ Fin ) |
282 |
277 265 279 281
|
isfsuppd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) finSupp ( 1r ‘ 𝑆 ) ) |
283 |
173 185 246 252 253 258 261 262 263 276 282
|
gsummptfsadd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
284 |
18 19 173 6 7 172 60 11
|
mhphflem |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) ) = ( 𝑁 ↑ 𝐿 ) ) |
285 |
284
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
286 |
283 285
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
287 |
286
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑎 ‘ 𝑣 ) ↑ 𝐿 ) · ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
288 |
251 287
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
289 |
231 288
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) ) ) = ( 𝑏 · ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
290 |
220 229 289
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( 𝑄 ‘ ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑣 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑣 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) ) ) |
291 |
170 290
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) ) ) |
292 |
|
ovex |
⊢ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ∈ V |
293 |
|
fveq2 |
⊢ ( 𝑓 = ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑄 ‘ 𝑓 ) = ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ) |
294 |
293
|
fveq1d |
⊢ ( 𝑓 = ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) → ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
295 |
293
|
fveq1d |
⊢ ( 𝑓 = ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) → ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) ) |
296 |
295
|
oveq2d |
⊢ ( 𝑓 = ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) ) ) |
297 |
294 296
|
eqeq12d |
⊢ ( 𝑓 = ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) → ( ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) ↔ ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) ) ) ) |
298 |
292 297
|
elab |
⊢ ( ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ↔ ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ) ‘ 𝐴 ) ) ) |
299 |
291 298
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( ( algSc ‘ ( 𝐼 mPoly 𝑈 ) ) ‘ 𝑏 ) ( .r ‘ ( 𝐼 mPoly 𝑈 ) ) ( 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑤 = 𝑎 , ( 1r ‘ 𝑈 ) , ( 0g ‘ 𝑈 ) ) ) ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) |
300 |
156 299
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑠 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑠 = 𝑎 , 𝑏 , ( 0g ‘ 𝑈 ) ) ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) |
301 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ↔ ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ 𝑥 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ) |
302 |
|
vex |
⊢ 𝑥 ∈ V |
303 |
|
fveq2 |
⊢ ( 𝑓 = 𝑥 → ( 𝑄 ‘ 𝑓 ) = ( 𝑄 ‘ 𝑥 ) ) |
304 |
303
|
fveq1d |
⊢ ( 𝑓 = 𝑥 → ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
305 |
303
|
fveq1d |
⊢ ( 𝑓 = 𝑥 → ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) |
306 |
305
|
oveq2d |
⊢ ( 𝑓 = 𝑥 → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
307 |
304 306
|
eqeq12d |
⊢ ( 𝑓 = 𝑥 → ( ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) ↔ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) |
308 |
302 307
|
elab |
⊢ ( 𝑥 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ↔ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
309 |
308
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ 𝑥 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ↔ ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) |
310 |
301 309
|
bitri |
⊢ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ↔ ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) |
311 |
|
elin |
⊢ ( 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ↔ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ 𝑦 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ) |
312 |
|
vex |
⊢ 𝑦 ∈ V |
313 |
|
fveq2 |
⊢ ( 𝑓 = 𝑦 → ( 𝑄 ‘ 𝑓 ) = ( 𝑄 ‘ 𝑦 ) ) |
314 |
313
|
fveq1d |
⊢ ( 𝑓 = 𝑦 → ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
315 |
313
|
fveq1d |
⊢ ( 𝑓 = 𝑦 → ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) |
316 |
315
|
oveq2d |
⊢ ( 𝑓 = 𝑦 → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) |
317 |
314 316
|
eqeq12d |
⊢ ( 𝑓 = 𝑦 → ( ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) ↔ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
318 |
312 317
|
elab |
⊢ ( 𝑦 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ↔ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) |
319 |
318
|
anbi2i |
⊢ ( ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ 𝑦 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ↔ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
320 |
311 319
|
bitri |
⊢ ( 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ↔ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
321 |
310 320
|
anbi12i |
⊢ ( ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ) ↔ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) |
322 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝑆 ∈ Ring ) |
323 |
175
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ) |
324 |
|
eqid |
⊢ ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) = ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) |
325 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) ) = ( Base ‘ ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) ) |
326 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝑆 ∈ CRing ) |
327 |
|
fvexd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ∈ V ) |
328 |
|
eqid |
⊢ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) |
329 |
1 16 3 328 4
|
evlsrhm |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( ( 𝐼 mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
330 |
7 8 9 329
|
syl3anc |
⊢ ( 𝜑 → 𝑄 ∈ ( ( 𝐼 mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
331 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
332 |
45 331
|
rhmf |
⊢ ( 𝑄 ∈ ( ( 𝐼 mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) → 𝑄 : ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
333 |
330 332
|
syl |
⊢ ( 𝜑 → 𝑄 : ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
334 |
333
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝑄 : ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
335 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝐼 ∈ 𝑉 ) |
336 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑈 ∈ Ring ) |
337 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
338 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ) |
339 |
2 16 45 335 336 337 338
|
mhpmpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑥 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
340 |
339
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) → 𝑥 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
341 |
340
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝑥 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
342 |
334 341
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑄 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
343 |
|
eqid |
⊢ ( 𝑆 ↑s 𝐼 ) = ( 𝑆 ↑s 𝐼 ) |
344 |
343 4
|
pwsbas |
⊢ ( ( 𝑆 ∈ CRing ∧ 𝐼 ∈ 𝑉 ) → ( 𝐾 ↑m 𝐼 ) = ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) |
345 |
8 7 344
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) = ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) |
346 |
345
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) ) |
347 |
346
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) ) ) |
348 |
347
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) ) ) |
349 |
342 348
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑄 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) ) ) |
350 |
324 4 325 326 327 349
|
pwselbas |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑄 ‘ 𝑥 ) : ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ⟶ 𝐾 ) |
351 |
13 345
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) |
352 |
351
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝐴 ∈ ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) |
353 |
350 352
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ∈ 𝐾 ) |
354 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝐼 ∈ 𝑉 ) |
355 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑈 ∈ Ring ) |
356 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
357 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ) |
358 |
2 16 45 354 355 356 357
|
mhpmpl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ) → 𝑦 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
359 |
358
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) → 𝑦 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
360 |
359
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝑦 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
361 |
334 360
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑄 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
362 |
361 348
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑄 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑆 ↑s ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ) ) ) |
363 |
324 4 325 326 327 362
|
pwselbas |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑄 ‘ 𝑦 ) : ( Base ‘ ( 𝑆 ↑s 𝐼 ) ) ⟶ 𝐾 ) |
364 |
363 352
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ∈ 𝐾 ) |
365 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
366 |
4 365 5
|
ringdi |
⊢ ( ( 𝑆 ∈ Ring ∧ ( ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ∈ 𝐾 ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ∈ 𝐾 ) ) → ( ( 𝑁 ↑ 𝐿 ) · ( ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ( +g ‘ 𝑆 ) ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) = ( ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ( +g ‘ 𝑆 ) ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
367 |
322 323 353 364 366
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑁 ↑ 𝐿 ) · ( ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ( +g ‘ 𝑆 ) ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) = ( ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ( +g ‘ 𝑆 ) ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
368 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝐼 ∈ 𝑉 ) |
369 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
370 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
371 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) → ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) |
372 |
339 371
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) → ( 𝑥 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
373 |
372
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑥 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
374 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) → ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) |
375 |
358 374
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) → ( 𝑦 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) |
376 |
375
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑦 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) |
377 |
1 16 3 4 45 368 326 369 370 373 376 17 365
|
evlsaddval |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ( +g ‘ 𝑆 ) ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
378 |
377
|
simprd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) = ( ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ( +g ‘ 𝑆 ) ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) |
379 |
378
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ( +g ‘ 𝑆 ) ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
380 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝐾 ∈ V ) |
381 |
57
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑗 · 𝑘 ) ∈ 𝐾 ) |
382 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝐼 × { 𝐿 } ) : 𝐼 ⟶ 𝐾 ) |
383 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
384 |
381 382 383 368 368 65
|
off |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) : 𝐼 ⟶ 𝐾 ) |
385 |
380 368 384
|
elmapdd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ∈ ( 𝐾 ↑m 𝐼 ) ) |
386 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) → ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
387 |
339 386
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) → ( 𝑥 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) |
388 |
387
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑥 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ) |
389 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) → ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) |
390 |
358 389
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) → ( 𝑦 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
391 |
390
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑦 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
392 |
1 16 3 4 45 368 326 369 385 388 391 17 365
|
evlsaddval |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ∧ ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ( +g ‘ 𝑆 ) ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) |
393 |
392
|
simprd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ( +g ‘ 𝑆 ) ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) |
394 |
367 379 393
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) ) ) |
395 |
|
ovex |
⊢ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ∈ V |
396 |
|
fveq2 |
⊢ ( 𝑓 = ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) → ( 𝑄 ‘ 𝑓 ) = ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ) |
397 |
396
|
fveq1d |
⊢ ( 𝑓 = ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) → ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
398 |
396
|
fveq1d |
⊢ ( 𝑓 = ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) → ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) ) |
399 |
398
|
oveq2d |
⊢ ( 𝑓 = ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) ) ) |
400 |
397 399
|
eqeq12d |
⊢ ( 𝑓 = ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) → ( ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) ↔ ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) ) ) ) |
401 |
395 400
|
elab |
⊢ ( ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ↔ ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ) ‘ 𝐴 ) ) ) |
402 |
394 401
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑥 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑥 ) ‘ 𝐴 ) ) ) ∧ ( 𝑦 ∈ ( 𝐻 ‘ 𝑁 ) ∧ ( ( 𝑄 ‘ 𝑦 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑦 ) ‘ 𝐴 ) ) ) ) ) → ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) |
403 |
321 402
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ∧ 𝑦 ∈ ( ( 𝐻 ‘ 𝑁 ) ∩ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) ) ) → ( 𝑥 ( +g ‘ ( 𝐼 mPoly 𝑈 ) ) 𝑦 ) ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) |
404 |
2 14 15 16 17 18 19 7 22 11 12 79 300 403
|
mhpind |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ) |
405 |
|
fveq2 |
⊢ ( 𝑓 = 𝑋 → ( 𝑄 ‘ 𝑓 ) = ( 𝑄 ‘ 𝑋 ) ) |
406 |
405
|
fveq1d |
⊢ ( 𝑓 = 𝑋 → ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) ) |
407 |
405
|
fveq1d |
⊢ ( 𝑓 = 𝑋 → ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) |
408 |
407
|
oveq2d |
⊢ ( 𝑓 = 𝑋 → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) |
409 |
406 408
|
eqeq12d |
⊢ ( 𝑓 = 𝑋 → ( ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) ↔ ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) ) |
410 |
409
|
elabg |
⊢ ( 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) → ( 𝑋 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ↔ ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) ) |
411 |
12 410
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ { 𝑓 ∣ ( ( 𝑄 ‘ 𝑓 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑓 ) ‘ 𝐴 ) ) } ↔ ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) ) |
412 |
404 411
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) |