| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhphf.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
| 2 |
|
mhphf.h |
⊢ 𝐻 = ( 𝐼 mHomP 𝑈 ) |
| 3 |
|
mhphf.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
| 4 |
|
mhphf.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 5 |
|
mhphf.m |
⊢ · = ( .r ‘ 𝑆 ) |
| 6 |
|
mhphf.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 7 |
|
mhphf.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 8 |
|
mhphf.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 9 |
|
mhphf.l |
⊢ ( 𝜑 → 𝐿 ∈ 𝑅 ) |
| 10 |
|
mhphf.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐻 ‘ 𝑁 ) ) |
| 11 |
|
mhphf.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 12 |
|
elmapi |
⊢ ( 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐾 ) |
| 14 |
13
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn 𝐼 ) |
| 15 |
11 14
|
fndmexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝐼 ∈ V ) |
| 17 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝐿 ∈ 𝑅 ) |
| 18 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝐴 Fn 𝐼 ) |
| 19 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑖 ) ) |
| 20 |
16 17 18 19
|
ofc1 |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) = ( 𝐿 · ( 𝐴 ‘ 𝑖 ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) = ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐿 · ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 22 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
| 23 |
22
|
crngmgp |
⊢ ( 𝑆 ∈ CRing → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
| 24 |
7 23
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
| 26 |
|
elrabi |
⊢ ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } → 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 27 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 28 |
27
|
psrbagf |
⊢ ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 29 |
26 28
|
syl |
⊢ ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 31 |
30
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑖 ) ∈ ℕ0 ) |
| 32 |
4
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
| 33 |
8 32
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ 𝐾 ) |
| 34 |
33 9
|
sseldd |
⊢ ( 𝜑 → 𝐿 ∈ 𝐾 ) |
| 35 |
34
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → 𝐿 ∈ 𝐾 ) |
| 36 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
| 37 |
36
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑖 ) ∈ 𝐾 ) |
| 38 |
22 4
|
mgpbas |
⊢ 𝐾 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
| 39 |
22 5
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 40 |
38 6 39
|
mulgnn0di |
⊢ ( ( ( mulGrp ‘ 𝑆 ) ∈ CMnd ∧ ( ( 𝑏 ‘ 𝑖 ) ∈ ℕ0 ∧ 𝐿 ∈ 𝐾 ∧ ( 𝐴 ‘ 𝑖 ) ∈ 𝐾 ) ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐿 · ( 𝐴 ‘ 𝑖 ) ) ) = ( ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) · ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 41 |
25 31 35 37 40
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐿 · ( 𝐴 ‘ 𝑖 ) ) ) = ( ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) · ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 42 |
21 41
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) = ( ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) · ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 43 |
42
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) · ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) |
| 44 |
43
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) = ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) · ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
| 45 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 46 |
22 45
|
ringidval |
⊢ ( 1r ‘ 𝑆 ) = ( 0g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 47 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝑆 ∈ CRing ) |
| 48 |
47 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
| 49 |
7
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 50 |
22
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 51 |
49 50
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 52 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 53 |
38 6 52 31 35
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ∈ 𝐾 ) |
| 54 |
38 6 52 31 37
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ∈ 𝐾 ) |
| 55 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) ) |
| 56 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 57 |
15
|
mptexd |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) ∈ V ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) ∈ V ) |
| 59 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 1r ‘ 𝑆 ) ∈ V ) |
| 60 |
|
funmpt |
⊢ Fun ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) |
| 61 |
60
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → Fun ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) ) |
| 62 |
27
|
psrbagfsupp |
⊢ ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → 𝑏 finSupp 0 ) |
| 63 |
26 62
|
syl |
⊢ ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } → 𝑏 finSupp 0 ) |
| 64 |
63
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝑏 finSupp 0 ) |
| 65 |
30
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 𝑏 = ( 𝑖 ∈ 𝐼 ↦ ( 𝑏 ‘ 𝑖 ) ) ) |
| 66 |
65
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑏 supp 0 ) = ( ( 𝑖 ∈ 𝐼 ↦ ( 𝑏 ‘ 𝑖 ) ) supp 0 ) ) |
| 67 |
66
|
eqimsscd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑖 ∈ 𝐼 ↦ ( 𝑏 ‘ 𝑖 ) ) supp 0 ) ⊆ ( 𝑏 supp 0 ) ) |
| 68 |
38 46 6
|
mulg0 |
⊢ ( 𝑘 ∈ 𝐾 → ( 0 ↑ 𝑘 ) = ( 1r ‘ 𝑆 ) ) |
| 69 |
68
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) ∧ 𝑘 ∈ 𝐾 ) → ( 0 ↑ 𝑘 ) = ( 1r ‘ 𝑆 ) ) |
| 70 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → 0 ∈ ℤ ) |
| 71 |
67 69 31 35 70
|
suppssov1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) supp ( 1r ‘ 𝑆 ) ) ⊆ ( 𝑏 supp 0 ) ) |
| 72 |
58 59 61 64 71
|
fsuppsssuppgd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) finSupp ( 1r ‘ 𝑆 ) ) |
| 73 |
15
|
mptexd |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ∈ V ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ∈ V ) |
| 75 |
|
funmpt |
⊢ Fun ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) |
| 76 |
75
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → Fun ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 77 |
67 69 31 37 70
|
suppssov1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) supp ( 1r ‘ 𝑆 ) ) ⊆ ( 𝑏 supp 0 ) ) |
| 78 |
74 59 76 64 77
|
fsuppsssuppgd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) finSupp ( 1r ‘ 𝑆 ) ) |
| 79 |
38 46 39 48 16 53 54 55 56 72 78
|
gsummptfsadd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) · ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) = ( ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
| 80 |
|
eqid |
⊢ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } = { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } |
| 81 |
2 10
|
mhprcl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 82 |
27 80 38 6 15 51 34 81
|
mhphflem |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) ) = ( 𝑁 ↑ 𝐿 ) ) |
| 83 |
82
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ 𝐿 ) ) ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
| 84 |
44 79 83
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
| 85 |
84
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) ) = ( ( 𝑋 ‘ 𝑏 ) · ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
| 86 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑈 ) = ( 𝐼 mPoly 𝑈 ) |
| 87 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 88 |
|
eqid |
⊢ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) = ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) |
| 89 |
2 86 88 10
|
mhpmpl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( 𝐼 mPoly 𝑈 ) ) ) |
| 90 |
86 87 88 27 89
|
mplelf |
⊢ ( 𝜑 → 𝑋 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑈 ) ) |
| 91 |
3
|
subrgbas |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 92 |
91 32
|
eqsstrrd |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
| 93 |
8 92
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
| 94 |
90 93
|
fssd |
⊢ ( 𝜑 → 𝑋 : { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ⟶ 𝐾 ) |
| 95 |
94
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( 𝑋 ‘ 𝑏 ) ∈ 𝐾 ) |
| 96 |
26 95
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑋 ‘ 𝑏 ) ∈ 𝐾 ) |
| 97 |
38 6 51 81 34
|
mulgnn0cld |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ) |
| 98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( 𝑁 ↑ 𝐿 ) ∈ 𝐾 ) |
| 99 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐼 ∈ V ) |
| 100 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑆 ∈ CRing ) |
| 101 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 102 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 103 |
27 4 22 6 99 100 101 102
|
evlsvvvallem |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ∈ 𝐾 ) |
| 104 |
26 103
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ∈ 𝐾 ) |
| 105 |
4 5 47 96 98 104
|
crng12d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑋 ‘ 𝑏 ) · ( ( 𝑁 ↑ 𝐿 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
| 106 |
85 105
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
| 107 |
106
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) ) ) = ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 108 |
107
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 109 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 110 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 111 |
110
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
| 112 |
111
|
rabex |
⊢ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∈ V |
| 113 |
112
|
a1i |
⊢ ( 𝜑 → { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ∈ V ) |
| 114 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → 𝑆 ∈ Ring ) |
| 115 |
4 5 114 95 103
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) → ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ∈ 𝐾 ) |
| 116 |
26 115
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ) → ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ∈ 𝐾 ) |
| 117 |
|
ssrab2 |
⊢ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 118 |
|
mptss |
⊢ ( { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } → ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ⊆ ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
| 119 |
117 118
|
mp1i |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ⊆ ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
| 120 |
27 86 3 88 4 22 6 5 15 7 8 89 11
|
evlsvvvallem2 |
⊢ ( 𝜑 → ( 𝑏 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
| 121 |
119 120
|
fsuppss |
⊢ ( 𝜑 → ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
| 122 |
4 109 5 49 113 97 116 121
|
gsummulc2 |
⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 123 |
108 122
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) ) ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 124 |
4
|
fvexi |
⊢ 𝐾 ∈ V |
| 125 |
124
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 126 |
4 5
|
ringcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) → ( 𝑗 · 𝑘 ) ∈ 𝐾 ) |
| 127 |
49 126
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) → ( 𝑗 · 𝑘 ) ∈ 𝐾 ) |
| 128 |
127
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑘 ∈ 𝐾 ) ) → ( 𝑗 · 𝑘 ) ∈ 𝐾 ) |
| 129 |
|
fconst6g |
⊢ ( 𝐿 ∈ 𝐾 → ( 𝐼 × { 𝐿 } ) : 𝐼 ⟶ 𝐾 ) |
| 130 |
34 129
|
syl |
⊢ ( 𝜑 → ( 𝐼 × { 𝐿 } ) : 𝐼 ⟶ 𝐾 ) |
| 131 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
| 132 |
128 130 13 15 15 131
|
off |
⊢ ( 𝜑 → ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) : 𝐼 ⟶ 𝐾 ) |
| 133 |
125 15 132
|
elmapdd |
⊢ ( 𝜑 → ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 134 |
1 2 3 27 80 4 22 6 5 7 8 10 133
|
evlsmhpvvval |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 135 |
1 2 3 27 80 4 22 6 5 7 8 10 11
|
evlsmhpvvval |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) = ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 136 |
135
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( 𝑆 Σg ( 𝑏 ∈ { 𝑔 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∣ ( ( ℂfld ↾s ℕ0 ) Σg 𝑔 ) = 𝑁 } ↦ ( ( 𝑋 ‘ 𝑏 ) · ( ( mulGrp ‘ 𝑆 ) Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 137 |
123 134 136
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑋 ) ‘ ( ( 𝐼 × { 𝐿 } ) ∘f · 𝐴 ) ) = ( ( 𝑁 ↑ 𝐿 ) · ( ( 𝑄 ‘ 𝑋 ) ‘ 𝐴 ) ) ) |