Step |
Hyp |
Ref |
Expression |
1 |
|
mhphf.q |
|- Q = ( ( I evalSub S ) ` R ) |
2 |
|
mhphf.h |
|- H = ( I mHomP U ) |
3 |
|
mhphf.u |
|- U = ( S |`s R ) |
4 |
|
mhphf.k |
|- K = ( Base ` S ) |
5 |
|
mhphf.m |
|- .x. = ( .r ` S ) |
6 |
|
mhphf.e |
|- .^ = ( .g ` ( mulGrp ` S ) ) |
7 |
|
mhphf.i |
|- ( ph -> I e. V ) |
8 |
|
mhphf.s |
|- ( ph -> S e. CRing ) |
9 |
|
mhphf.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
10 |
|
mhphf.l |
|- ( ph -> L e. R ) |
11 |
|
mhphf.n |
|- ( ph -> N e. NN0 ) |
12 |
|
mhphf.x |
|- ( ph -> X e. ( H ` N ) ) |
13 |
|
mhphf.a |
|- ( ph -> A e. ( K ^m I ) ) |
14 |
7
|
adantr |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> I e. V ) |
15 |
10
|
adantr |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> L e. R ) |
16 |
|
elmapi |
|- ( A e. ( K ^m I ) -> A : I --> K ) |
17 |
13 16
|
syl |
|- ( ph -> A : I --> K ) |
18 |
17
|
ffnd |
|- ( ph -> A Fn I ) |
19 |
18
|
adantr |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> A Fn I ) |
20 |
|
eqidd |
|- ( ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) /\ i e. I ) -> ( A ` i ) = ( A ` i ) ) |
21 |
14 15 19 20
|
ofc1 |
|- ( ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) /\ i e. I ) -> ( ( ( I X. { L } ) oF .x. A ) ` i ) = ( L .x. ( A ` i ) ) ) |
22 |
21
|
oveq2d |
|- ( ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) /\ i e. I ) -> ( ( b ` i ) .^ ( ( ( I X. { L } ) oF .x. A ) ` i ) ) = ( ( b ` i ) .^ ( L .x. ( A ` i ) ) ) ) |
23 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
24 |
23
|
crngmgp |
|- ( S e. CRing -> ( mulGrp ` S ) e. CMnd ) |
25 |
8 24
|
syl |
|- ( ph -> ( mulGrp ` S ) e. CMnd ) |
26 |
25
|
ad2antrr |
|- ( ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) /\ i e. I ) -> ( mulGrp ` S ) e. CMnd ) |
27 |
|
elrabi |
|- ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } -> b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
28 |
|
eqid |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
29 |
28
|
psrbagf |
|- ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> b : I --> NN0 ) |
30 |
27 29
|
syl |
|- ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } -> b : I --> NN0 ) |
31 |
30
|
adantl |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> b : I --> NN0 ) |
32 |
31
|
ffvelcdmda |
|- ( ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) /\ i e. I ) -> ( b ` i ) e. NN0 ) |
33 |
4
|
subrgss |
|- ( R e. ( SubRing ` S ) -> R C_ K ) |
34 |
9 33
|
syl |
|- ( ph -> R C_ K ) |
35 |
34 10
|
sseldd |
|- ( ph -> L e. K ) |
36 |
35
|
ad2antrr |
|- ( ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) /\ i e. I ) -> L e. K ) |
37 |
17
|
adantr |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> A : I --> K ) |
38 |
37
|
ffvelcdmda |
|- ( ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) /\ i e. I ) -> ( A ` i ) e. K ) |
39 |
23 4
|
mgpbas |
|- K = ( Base ` ( mulGrp ` S ) ) |
40 |
23 5
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` S ) ) |
41 |
39 6 40
|
mulgnn0di |
|- ( ( ( mulGrp ` S ) e. CMnd /\ ( ( b ` i ) e. NN0 /\ L e. K /\ ( A ` i ) e. K ) ) -> ( ( b ` i ) .^ ( L .x. ( A ` i ) ) ) = ( ( ( b ` i ) .^ L ) .x. ( ( b ` i ) .^ ( A ` i ) ) ) ) |
42 |
26 32 36 38 41
|
syl13anc |
|- ( ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) /\ i e. I ) -> ( ( b ` i ) .^ ( L .x. ( A ` i ) ) ) = ( ( ( b ` i ) .^ L ) .x. ( ( b ` i ) .^ ( A ` i ) ) ) ) |
43 |
22 42
|
eqtrd |
|- ( ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) /\ i e. I ) -> ( ( b ` i ) .^ ( ( ( I X. { L } ) oF .x. A ) ` i ) ) = ( ( ( b ` i ) .^ L ) .x. ( ( b ` i ) .^ ( A ` i ) ) ) ) |
44 |
43
|
mpteq2dva |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( i e. I |-> ( ( b ` i ) .^ ( ( ( I X. { L } ) oF .x. A ) ` i ) ) ) = ( i e. I |-> ( ( ( b ` i ) .^ L ) .x. ( ( b ` i ) .^ ( A ` i ) ) ) ) ) |
45 |
44
|
oveq2d |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( ( ( I X. { L } ) oF .x. A ) ` i ) ) ) ) = ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( ( b ` i ) .^ L ) .x. ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) |
46 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
47 |
23 46
|
ringidval |
|- ( 1r ` S ) = ( 0g ` ( mulGrp ` S ) ) |
48 |
8
|
adantr |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> S e. CRing ) |
49 |
48 24
|
syl |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( mulGrp ` S ) e. CMnd ) |
50 |
8
|
crngringd |
|- ( ph -> S e. Ring ) |
51 |
23
|
ringmgp |
|- ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) |
52 |
50 51
|
syl |
|- ( ph -> ( mulGrp ` S ) e. Mnd ) |
53 |
52
|
ad2antrr |
|- ( ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) /\ i e. I ) -> ( mulGrp ` S ) e. Mnd ) |
54 |
39 6 53 32 36
|
mulgnn0cld |
|- ( ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) /\ i e. I ) -> ( ( b ` i ) .^ L ) e. K ) |
55 |
39 6 53 32 38
|
mulgnn0cld |
|- ( ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) /\ i e. I ) -> ( ( b ` i ) .^ ( A ` i ) ) e. K ) |
56 |
|
eqidd |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( i e. I |-> ( ( b ` i ) .^ L ) ) = ( i e. I |-> ( ( b ` i ) .^ L ) ) ) |
57 |
|
eqidd |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) = ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) |
58 |
7
|
mptexd |
|- ( ph -> ( i e. I |-> ( ( b ` i ) .^ L ) ) e. _V ) |
59 |
58
|
adantr |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( i e. I |-> ( ( b ` i ) .^ L ) ) e. _V ) |
60 |
|
fvexd |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( 1r ` S ) e. _V ) |
61 |
|
funmpt |
|- Fun ( i e. I |-> ( ( b ` i ) .^ L ) ) |
62 |
61
|
a1i |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> Fun ( i e. I |-> ( ( b ` i ) .^ L ) ) ) |
63 |
28
|
psrbagfsupp |
|- ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> b finSupp 0 ) |
64 |
27 63
|
syl |
|- ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } -> b finSupp 0 ) |
65 |
64
|
adantl |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> b finSupp 0 ) |
66 |
31
|
feqmptd |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> b = ( i e. I |-> ( b ` i ) ) ) |
67 |
66
|
oveq1d |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( b supp 0 ) = ( ( i e. I |-> ( b ` i ) ) supp 0 ) ) |
68 |
67
|
eqimsscd |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( ( i e. I |-> ( b ` i ) ) supp 0 ) C_ ( b supp 0 ) ) |
69 |
39 47 6
|
mulg0 |
|- ( k e. K -> ( 0 .^ k ) = ( 1r ` S ) ) |
70 |
69
|
adantl |
|- ( ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) /\ k e. K ) -> ( 0 .^ k ) = ( 1r ` S ) ) |
71 |
|
0zd |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> 0 e. ZZ ) |
72 |
68 70 32 36 71
|
suppssov1 |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( ( i e. I |-> ( ( b ` i ) .^ L ) ) supp ( 1r ` S ) ) C_ ( b supp 0 ) ) |
73 |
59 60 62 65 72
|
fsuppsssuppgd |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( i e. I |-> ( ( b ` i ) .^ L ) ) finSupp ( 1r ` S ) ) |
74 |
7
|
mptexd |
|- ( ph -> ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) e. _V ) |
75 |
74
|
adantr |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) e. _V ) |
76 |
|
funmpt |
|- Fun ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) |
77 |
76
|
a1i |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> Fun ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) |
78 |
68 70 32 38 71
|
suppssov1 |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) supp ( 1r ` S ) ) C_ ( b supp 0 ) ) |
79 |
75 60 77 65 78
|
fsuppsssuppgd |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) finSupp ( 1r ` S ) ) |
80 |
39 47 40 49 14 54 55 56 57 73 79
|
gsummptfsadd |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( ( b ` i ) .^ L ) .x. ( ( b ` i ) .^ ( A ` i ) ) ) ) ) = ( ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ L ) ) ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) |
81 |
|
eqid |
|- { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } = { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |
82 |
28 81 39 6 7 52 35 11
|
mhphflem |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ L ) ) ) = ( N .^ L ) ) |
83 |
82
|
oveq1d |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ L ) ) ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) = ( ( N .^ L ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) |
84 |
45 80 83
|
3eqtrd |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( ( ( I X. { L } ) oF .x. A ) ` i ) ) ) ) = ( ( N .^ L ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) |
85 |
84
|
oveq2d |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( ( ( I X. { L } ) oF .x. A ) ` i ) ) ) ) ) = ( ( X ` b ) .x. ( ( N .^ L ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) |
86 |
|
eqid |
|- ( I mPoly U ) = ( I mPoly U ) |
87 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
88 |
|
eqid |
|- ( Base ` ( I mPoly U ) ) = ( Base ` ( I mPoly U ) ) |
89 |
3
|
ovexi |
|- U e. _V |
90 |
89
|
a1i |
|- ( ph -> U e. _V ) |
91 |
2 86 88 7 90 11 12
|
mhpmpl |
|- ( ph -> X e. ( Base ` ( I mPoly U ) ) ) |
92 |
86 87 88 28 91
|
mplelf |
|- ( ph -> X : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` U ) ) |
93 |
3
|
subrgbas |
|- ( R e. ( SubRing ` S ) -> R = ( Base ` U ) ) |
94 |
93 33
|
eqsstrrd |
|- ( R e. ( SubRing ` S ) -> ( Base ` U ) C_ K ) |
95 |
9 94
|
syl |
|- ( ph -> ( Base ` U ) C_ K ) |
96 |
92 95
|
fssd |
|- ( ph -> X : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> K ) |
97 |
96
|
ffvelcdmda |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( X ` b ) e. K ) |
98 |
27 97
|
sylan2 |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( X ` b ) e. K ) |
99 |
39 6 52 11 35
|
mulgnn0cld |
|- ( ph -> ( N .^ L ) e. K ) |
100 |
99
|
adantr |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( N .^ L ) e. K ) |
101 |
7
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> I e. V ) |
102 |
8
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> S e. CRing ) |
103 |
13
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> A e. ( K ^m I ) ) |
104 |
|
simpr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
105 |
28 4 23 6 101 102 103 104
|
evlsvvvallem |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) e. K ) |
106 |
27 105
|
sylan2 |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) e. K ) |
107 |
4 5 48 98 100 106
|
crng12d |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( ( X ` b ) .x. ( ( N .^ L ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) = ( ( N .^ L ) .x. ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) |
108 |
85 107
|
eqtrd |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( ( ( I X. { L } ) oF .x. A ) ` i ) ) ) ) ) = ( ( N .^ L ) .x. ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) |
109 |
108
|
mpteq2dva |
|- ( ph -> ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |-> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( ( ( I X. { L } ) oF .x. A ) ` i ) ) ) ) ) ) = ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |-> ( ( N .^ L ) .x. ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) |
110 |
109
|
oveq2d |
|- ( ph -> ( S gsum ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |-> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( ( ( I X. { L } ) oF .x. A ) ` i ) ) ) ) ) ) ) = ( S gsum ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |-> ( ( N .^ L ) .x. ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) ) |
111 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
112 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
113 |
112
|
rabex |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } e. _V |
114 |
113
|
rabex |
|- { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } e. _V |
115 |
114
|
a1i |
|- ( ph -> { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } e. _V ) |
116 |
50
|
adantr |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> S e. Ring ) |
117 |
4 5 116 97 105
|
ringcld |
|- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) e. K ) |
118 |
27 117
|
sylan2 |
|- ( ( ph /\ b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } ) -> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) e. K ) |
119 |
|
ssrab2 |
|- { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } C_ { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
120 |
|
mptss |
|- ( { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } C_ { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } -> ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |-> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) C_ ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) |
121 |
119 120
|
mp1i |
|- ( ph -> ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |-> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) C_ ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) |
122 |
28 86 3 88 4 23 6 5 7 8 9 91 13
|
evlsvvvallem2 |
|- ( ph -> ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) finSupp ( 0g ` S ) ) |
123 |
121 122
|
fsuppss |
|- ( ph -> ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |-> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) finSupp ( 0g ` S ) ) |
124 |
4 111 5 50 115 99 118 123
|
gsummulc2 |
|- ( ph -> ( S gsum ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |-> ( ( N .^ L ) .x. ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) = ( ( N .^ L ) .x. ( S gsum ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |-> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) ) |
125 |
110 124
|
eqtrd |
|- ( ph -> ( S gsum ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |-> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( ( ( I X. { L } ) oF .x. A ) ` i ) ) ) ) ) ) ) = ( ( N .^ L ) .x. ( S gsum ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |-> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) ) |
126 |
4
|
fvexi |
|- K e. _V |
127 |
126
|
a1i |
|- ( ph -> K e. _V ) |
128 |
4 5
|
ringcl |
|- ( ( S e. Ring /\ j e. K /\ k e. K ) -> ( j .x. k ) e. K ) |
129 |
50 128
|
syl3an1 |
|- ( ( ph /\ j e. K /\ k e. K ) -> ( j .x. k ) e. K ) |
130 |
129
|
3expb |
|- ( ( ph /\ ( j e. K /\ k e. K ) ) -> ( j .x. k ) e. K ) |
131 |
|
fconst6g |
|- ( L e. K -> ( I X. { L } ) : I --> K ) |
132 |
35 131
|
syl |
|- ( ph -> ( I X. { L } ) : I --> K ) |
133 |
|
inidm |
|- ( I i^i I ) = I |
134 |
130 132 17 7 7 133
|
off |
|- ( ph -> ( ( I X. { L } ) oF .x. A ) : I --> K ) |
135 |
127 7 134
|
elmapdd |
|- ( ph -> ( ( I X. { L } ) oF .x. A ) e. ( K ^m I ) ) |
136 |
1 2 3 28 81 4 23 6 5 7 8 9 11 12 135
|
evlsmhpvvval |
|- ( ph -> ( ( Q ` X ) ` ( ( I X. { L } ) oF .x. A ) ) = ( S gsum ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |-> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( ( ( I X. { L } ) oF .x. A ) ` i ) ) ) ) ) ) ) ) |
137 |
1 2 3 28 81 4 23 6 5 7 8 9 11 12 13
|
evlsmhpvvval |
|- ( ph -> ( ( Q ` X ) ` A ) = ( S gsum ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |-> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) |
138 |
137
|
oveq2d |
|- ( ph -> ( ( N .^ L ) .x. ( ( Q ` X ) ` A ) ) = ( ( N .^ L ) .x. ( S gsum ( b e. { g e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | ( ( CCfld |`s NN0 ) gsum g ) = N } |-> ( ( X ` b ) .x. ( ( mulGrp ` S ) gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) ) |
139 |
125 136 138
|
3eqtr4d |
|- ( ph -> ( ( Q ` X ) ` ( ( I X. { L } ) oF .x. A ) ) = ( ( N .^ L ) .x. ( ( Q ` X ) ` A ) ) ) |