Step |
Hyp |
Ref |
Expression |
1 |
|
evlsmhpvvval.q |
|- Q = ( ( I evalSub S ) ` R ) |
2 |
|
evlsmhpvvval.p |
|- H = ( I mHomP U ) |
3 |
|
evlsmhpvvval.u |
|- U = ( S |`s R ) |
4 |
|
evlsmhpvvval.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
5 |
|
evlsmhpvvval.g |
|- G = { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } |
6 |
|
evlsmhpvvval.k |
|- K = ( Base ` S ) |
7 |
|
evlsmhpvvval.m |
|- M = ( mulGrp ` S ) |
8 |
|
evlsmhpvvval.w |
|- .^ = ( .g ` M ) |
9 |
|
evlsmhpvvval.x |
|- .x. = ( .r ` S ) |
10 |
|
evlsmhpvvval.i |
|- ( ph -> I e. V ) |
11 |
|
evlsmhpvvval.s |
|- ( ph -> S e. CRing ) |
12 |
|
evlsmhpvvval.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
13 |
|
evlsmhpvvval.n |
|- ( ph -> N e. NN0 ) |
14 |
|
evlsmhpvvval.f |
|- ( ph -> F e. ( H ` N ) ) |
15 |
|
evlsmhpvvval.a |
|- ( ph -> A e. ( K ^m I ) ) |
16 |
|
eqid |
|- ( I mPoly U ) = ( I mPoly U ) |
17 |
|
eqid |
|- ( Base ` ( I mPoly U ) ) = ( Base ` ( I mPoly U ) ) |
18 |
3
|
ovexi |
|- U e. _V |
19 |
18
|
a1i |
|- ( ph -> U e. _V ) |
20 |
2 16 17 10 19 13 14
|
mhpmpl |
|- ( ph -> F e. ( Base ` ( I mPoly U ) ) ) |
21 |
1 16 17 3 4 6 7 8 9 10 11 12 20 15
|
evlsvvval |
|- ( ph -> ( ( Q ` F ) ` A ) = ( S gsum ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) |
22 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
23 |
11
|
crngringd |
|- ( ph -> S e. Ring ) |
24 |
23
|
ringcmnd |
|- ( ph -> S e. CMnd ) |
25 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
26 |
4 25
|
rabex2 |
|- D e. _V |
27 |
26
|
a1i |
|- ( ph -> D e. _V ) |
28 |
23
|
adantr |
|- ( ( ph /\ b e. D ) -> S e. Ring ) |
29 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
30 |
16 29 17 4 20
|
mplelf |
|- ( ph -> F : D --> ( Base ` U ) ) |
31 |
3
|
subrgbas |
|- ( R e. ( SubRing ` S ) -> R = ( Base ` U ) ) |
32 |
6
|
subrgss |
|- ( R e. ( SubRing ` S ) -> R C_ K ) |
33 |
31 32
|
eqsstrrd |
|- ( R e. ( SubRing ` S ) -> ( Base ` U ) C_ K ) |
34 |
12 33
|
syl |
|- ( ph -> ( Base ` U ) C_ K ) |
35 |
30 34
|
fssd |
|- ( ph -> F : D --> K ) |
36 |
35
|
ffvelcdmda |
|- ( ( ph /\ b e. D ) -> ( F ` b ) e. K ) |
37 |
10
|
adantr |
|- ( ( ph /\ b e. D ) -> I e. V ) |
38 |
11
|
adantr |
|- ( ( ph /\ b e. D ) -> S e. CRing ) |
39 |
15
|
adantr |
|- ( ( ph /\ b e. D ) -> A e. ( K ^m I ) ) |
40 |
|
simpr |
|- ( ( ph /\ b e. D ) -> b e. D ) |
41 |
4 6 7 8 37 38 39 40
|
evlsvvvallem |
|- ( ( ph /\ b e. D ) -> ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) e. K ) |
42 |
6 9 28 36 41
|
ringcld |
|- ( ( ph /\ b e. D ) -> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) e. K ) |
43 |
42
|
fmpttd |
|- ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) : D --> K ) |
44 |
3 22
|
subrg0 |
|- ( R e. ( SubRing ` S ) -> ( 0g ` S ) = ( 0g ` U ) ) |
45 |
12 44
|
syl |
|- ( ph -> ( 0g ` S ) = ( 0g ` U ) ) |
46 |
45
|
oveq2d |
|- ( ph -> ( F supp ( 0g ` S ) ) = ( F supp ( 0g ` U ) ) ) |
47 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
48 |
2 47 4 10 19 13 14
|
mhpdeg |
|- ( ph -> ( F supp ( 0g ` U ) ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } ) |
49 |
48 5
|
sseqtrrdi |
|- ( ph -> ( F supp ( 0g ` U ) ) C_ G ) |
50 |
46 49
|
eqsstrd |
|- ( ph -> ( F supp ( 0g ` S ) ) C_ G ) |
51 |
|
fvexd |
|- ( ph -> ( 0g ` S ) e. _V ) |
52 |
35 50 27 51
|
suppssr |
|- ( ( ph /\ b e. ( D \ G ) ) -> ( F ` b ) = ( 0g ` S ) ) |
53 |
52
|
oveq1d |
|- ( ( ph /\ b e. ( D \ G ) ) -> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) = ( ( 0g ` S ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) |
54 |
23
|
adantr |
|- ( ( ph /\ b e. ( D \ G ) ) -> S e. Ring ) |
55 |
|
eldifi |
|- ( b e. ( D \ G ) -> b e. D ) |
56 |
55 41
|
sylan2 |
|- ( ( ph /\ b e. ( D \ G ) ) -> ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) e. K ) |
57 |
6 9 22 54 56
|
ringlzd |
|- ( ( ph /\ b e. ( D \ G ) ) -> ( ( 0g ` S ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) = ( 0g ` S ) ) |
58 |
53 57
|
eqtrd |
|- ( ( ph /\ b e. ( D \ G ) ) -> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) = ( 0g ` S ) ) |
59 |
58 27
|
suppss2 |
|- ( ph -> ( ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) supp ( 0g ` S ) ) C_ G ) |
60 |
4 16 3 17 6 7 8 9 10 11 12 20 15
|
evlsvvvallem2 |
|- ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) finSupp ( 0g ` S ) ) |
61 |
6 22 24 27 43 59 60
|
gsumres |
|- ( ph -> ( S gsum ( ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) |` G ) ) = ( S gsum ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) |
62 |
5
|
ssrab3 |
|- G C_ D |
63 |
62
|
a1i |
|- ( ph -> G C_ D ) |
64 |
63
|
resmptd |
|- ( ph -> ( ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) |` G ) = ( b e. G |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) |
65 |
64
|
oveq2d |
|- ( ph -> ( S gsum ( ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) |` G ) ) = ( S gsum ( b e. G |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) |
66 |
21 61 65
|
3eqtr2d |
|- ( ph -> ( ( Q ` F ) ` A ) = ( S gsum ( b e. G |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) ) |