Metamath Proof Explorer


Theorem evlsmhpvvval

Description: Give a formula for the evaluation of a homogeneous polynomial given assignments from variables to values. The difference between this and evlsvvval is that b e. D is restricted to b e. G , that is, we can evaluate an N -th degree homogeneous polynomial over just the terms where the sum of all variable degrees is N . (Contributed by SN, 5-Mar-2025)

Ref Expression
Hypotheses evlsmhpvvval.q
|- Q = ( ( I evalSub S ) ` R )
evlsmhpvvval.p
|- H = ( I mHomP U )
evlsmhpvvval.u
|- U = ( S |`s R )
evlsmhpvvval.d
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
evlsmhpvvval.g
|- G = { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N }
evlsmhpvvval.k
|- K = ( Base ` S )
evlsmhpvvval.m
|- M = ( mulGrp ` S )
evlsmhpvvval.w
|- .^ = ( .g ` M )
evlsmhpvvval.x
|- .x. = ( .r ` S )
evlsmhpvvval.i
|- ( ph -> I e. V )
evlsmhpvvval.s
|- ( ph -> S e. CRing )
evlsmhpvvval.r
|- ( ph -> R e. ( SubRing ` S ) )
evlsmhpvvval.n
|- ( ph -> N e. NN0 )
evlsmhpvvval.f
|- ( ph -> F e. ( H ` N ) )
evlsmhpvvval.a
|- ( ph -> A e. ( K ^m I ) )
Assertion evlsmhpvvval
|- ( ph -> ( ( Q ` F ) ` A ) = ( S gsum ( b e. G |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 evlsmhpvvval.q
 |-  Q = ( ( I evalSub S ) ` R )
2 evlsmhpvvval.p
 |-  H = ( I mHomP U )
3 evlsmhpvvval.u
 |-  U = ( S |`s R )
4 evlsmhpvvval.d
 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
5 evlsmhpvvval.g
 |-  G = { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N }
6 evlsmhpvvval.k
 |-  K = ( Base ` S )
7 evlsmhpvvval.m
 |-  M = ( mulGrp ` S )
8 evlsmhpvvval.w
 |-  .^ = ( .g ` M )
9 evlsmhpvvval.x
 |-  .x. = ( .r ` S )
10 evlsmhpvvval.i
 |-  ( ph -> I e. V )
11 evlsmhpvvval.s
 |-  ( ph -> S e. CRing )
12 evlsmhpvvval.r
 |-  ( ph -> R e. ( SubRing ` S ) )
13 evlsmhpvvval.n
 |-  ( ph -> N e. NN0 )
14 evlsmhpvvval.f
 |-  ( ph -> F e. ( H ` N ) )
15 evlsmhpvvval.a
 |-  ( ph -> A e. ( K ^m I ) )
16 eqid
 |-  ( I mPoly U ) = ( I mPoly U )
17 eqid
 |-  ( Base ` ( I mPoly U ) ) = ( Base ` ( I mPoly U ) )
18 3 ovexi
 |-  U e. _V
19 18 a1i
 |-  ( ph -> U e. _V )
20 2 16 17 10 19 13 14 mhpmpl
 |-  ( ph -> F e. ( Base ` ( I mPoly U ) ) )
21 1 16 17 3 4 6 7 8 9 10 11 12 20 15 evlsvvval
 |-  ( ph -> ( ( Q ` F ) ` A ) = ( S gsum ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) )
22 eqid
 |-  ( 0g ` S ) = ( 0g ` S )
23 11 crngringd
 |-  ( ph -> S e. Ring )
24 23 ringcmnd
 |-  ( ph -> S e. CMnd )
25 ovex
 |-  ( NN0 ^m I ) e. _V
26 4 25 rabex2
 |-  D e. _V
27 26 a1i
 |-  ( ph -> D e. _V )
28 23 adantr
 |-  ( ( ph /\ b e. D ) -> S e. Ring )
29 eqid
 |-  ( Base ` U ) = ( Base ` U )
30 16 29 17 4 20 mplelf
 |-  ( ph -> F : D --> ( Base ` U ) )
31 3 subrgbas
 |-  ( R e. ( SubRing ` S ) -> R = ( Base ` U ) )
32 6 subrgss
 |-  ( R e. ( SubRing ` S ) -> R C_ K )
33 31 32 eqsstrrd
 |-  ( R e. ( SubRing ` S ) -> ( Base ` U ) C_ K )
34 12 33 syl
 |-  ( ph -> ( Base ` U ) C_ K )
35 30 34 fssd
 |-  ( ph -> F : D --> K )
36 35 ffvelcdmda
 |-  ( ( ph /\ b e. D ) -> ( F ` b ) e. K )
37 10 adantr
 |-  ( ( ph /\ b e. D ) -> I e. V )
38 11 adantr
 |-  ( ( ph /\ b e. D ) -> S e. CRing )
39 15 adantr
 |-  ( ( ph /\ b e. D ) -> A e. ( K ^m I ) )
40 simpr
 |-  ( ( ph /\ b e. D ) -> b e. D )
41 4 6 7 8 37 38 39 40 evlsvvvallem
 |-  ( ( ph /\ b e. D ) -> ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) e. K )
42 6 9 28 36 41 ringcld
 |-  ( ( ph /\ b e. D ) -> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) e. K )
43 42 fmpttd
 |-  ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) : D --> K )
44 3 22 subrg0
 |-  ( R e. ( SubRing ` S ) -> ( 0g ` S ) = ( 0g ` U ) )
45 12 44 syl
 |-  ( ph -> ( 0g ` S ) = ( 0g ` U ) )
46 45 oveq2d
 |-  ( ph -> ( F supp ( 0g ` S ) ) = ( F supp ( 0g ` U ) ) )
47 eqid
 |-  ( 0g ` U ) = ( 0g ` U )
48 2 47 4 10 19 13 14 mhpdeg
 |-  ( ph -> ( F supp ( 0g ` U ) ) C_ { g e. D | ( ( CCfld |`s NN0 ) gsum g ) = N } )
49 48 5 sseqtrrdi
 |-  ( ph -> ( F supp ( 0g ` U ) ) C_ G )
50 46 49 eqsstrd
 |-  ( ph -> ( F supp ( 0g ` S ) ) C_ G )
51 fvexd
 |-  ( ph -> ( 0g ` S ) e. _V )
52 35 50 27 51 suppssr
 |-  ( ( ph /\ b e. ( D \ G ) ) -> ( F ` b ) = ( 0g ` S ) )
53 52 oveq1d
 |-  ( ( ph /\ b e. ( D \ G ) ) -> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) = ( ( 0g ` S ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) )
54 23 adantr
 |-  ( ( ph /\ b e. ( D \ G ) ) -> S e. Ring )
55 eldifi
 |-  ( b e. ( D \ G ) -> b e. D )
56 55 41 sylan2
 |-  ( ( ph /\ b e. ( D \ G ) ) -> ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) e. K )
57 6 9 22 54 56 ringlzd
 |-  ( ( ph /\ b e. ( D \ G ) ) -> ( ( 0g ` S ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) = ( 0g ` S ) )
58 53 57 eqtrd
 |-  ( ( ph /\ b e. ( D \ G ) ) -> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) = ( 0g ` S ) )
59 58 27 suppss2
 |-  ( ph -> ( ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) supp ( 0g ` S ) ) C_ G )
60 4 16 3 17 6 7 8 9 10 11 12 20 15 evlsvvvallem2
 |-  ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) finSupp ( 0g ` S ) )
61 6 22 24 27 43 59 60 gsumres
 |-  ( ph -> ( S gsum ( ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) |` G ) ) = ( S gsum ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) )
62 5 ssrab3
 |-  G C_ D
63 62 a1i
 |-  ( ph -> G C_ D )
64 63 resmptd
 |-  ( ph -> ( ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) |` G ) = ( b e. G |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) )
65 64 oveq2d
 |-  ( ph -> ( S gsum ( ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) |` G ) ) = ( S gsum ( b e. G |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) )
66 21 61 65 3eqtr2d
 |-  ( ph -> ( ( Q ` F ) ` A ) = ( S gsum ( b e. G |-> ( ( F ` b ) .x. ( M gsum ( i e. I |-> ( ( b ` i ) .^ ( A ` i ) ) ) ) ) ) ) )