Metamath Proof Explorer


Theorem evlsvvvallem2

Description: Lemma for theorems using evlsvvval . (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypotheses evlsvvvallem2.d
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
evlsvvvallem2.p
|- P = ( I mPoly U )
evlsvvvallem2.u
|- U = ( S |`s R )
evlsvvvallem2.b
|- B = ( Base ` P )
evlsvvvallem2.k
|- K = ( Base ` S )
evlsvvvallem2.m
|- M = ( mulGrp ` S )
evlsvvvallem2.w
|- .^ = ( .g ` M )
evlsvvvallem2.x
|- .x. = ( .r ` S )
evlsvvvallem2.i
|- ( ph -> I e. V )
evlsvvvallem2.s
|- ( ph -> S e. CRing )
evlsvvvallem2.r
|- ( ph -> R e. ( SubRing ` S ) )
evlsvvvallem2.f
|- ( ph -> F e. B )
evlsvvvallem2.a
|- ( ph -> A e. ( K ^m I ) )
Assertion evlsvvvallem2
|- ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) finSupp ( 0g ` S ) )

Proof

Step Hyp Ref Expression
1 evlsvvvallem2.d
 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
2 evlsvvvallem2.p
 |-  P = ( I mPoly U )
3 evlsvvvallem2.u
 |-  U = ( S |`s R )
4 evlsvvvallem2.b
 |-  B = ( Base ` P )
5 evlsvvvallem2.k
 |-  K = ( Base ` S )
6 evlsvvvallem2.m
 |-  M = ( mulGrp ` S )
7 evlsvvvallem2.w
 |-  .^ = ( .g ` M )
8 evlsvvvallem2.x
 |-  .x. = ( .r ` S )
9 evlsvvvallem2.i
 |-  ( ph -> I e. V )
10 evlsvvvallem2.s
 |-  ( ph -> S e. CRing )
11 evlsvvvallem2.r
 |-  ( ph -> R e. ( SubRing ` S ) )
12 evlsvvvallem2.f
 |-  ( ph -> F e. B )
13 evlsvvvallem2.a
 |-  ( ph -> A e. ( K ^m I ) )
14 ovex
 |-  ( NN0 ^m I ) e. _V
15 1 14 rabex2
 |-  D e. _V
16 15 mptex
 |-  ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) e. _V
17 16 a1i
 |-  ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) e. _V )
18 fvexd
 |-  ( ph -> ( 0g ` S ) e. _V )
19 funmpt
 |-  Fun ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) )
20 19 a1i
 |-  ( ph -> Fun ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) )
21 eqid
 |-  ( 0g ` U ) = ( 0g ` U )
22 3 ovexi
 |-  U e. _V
23 22 a1i
 |-  ( ph -> U e. _V )
24 2 4 21 12 23 mplelsfi
 |-  ( ph -> F finSupp ( 0g ` U ) )
25 eqid
 |-  ( Base ` U ) = ( Base ` U )
26 2 25 4 1 12 mplelf
 |-  ( ph -> F : D --> ( Base ` U ) )
27 ssidd
 |-  ( ph -> ( F supp ( 0g ` U ) ) C_ ( F supp ( 0g ` U ) ) )
28 fvexd
 |-  ( ph -> ( 0g ` U ) e. _V )
29 26 27 12 28 suppssrg
 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( F ` b ) = ( 0g ` U ) )
30 eqid
 |-  ( 0g ` S ) = ( 0g ` S )
31 3 30 subrg0
 |-  ( R e. ( SubRing ` S ) -> ( 0g ` S ) = ( 0g ` U ) )
32 11 31 syl
 |-  ( ph -> ( 0g ` S ) = ( 0g ` U ) )
33 32 eqcomd
 |-  ( ph -> ( 0g ` U ) = ( 0g ` S ) )
34 33 adantr
 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( 0g ` U ) = ( 0g ` S ) )
35 29 34 eqtrd
 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( F ` b ) = ( 0g ` S ) )
36 35 oveq1d
 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( ( 0g ` S ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) )
37 10 crngringd
 |-  ( ph -> S e. Ring )
38 37 adantr
 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> S e. Ring )
39 eldifi
 |-  ( b e. ( D \ ( F supp ( 0g ` U ) ) ) -> b e. D )
40 9 adantr
 |-  ( ( ph /\ b e. D ) -> I e. V )
41 10 adantr
 |-  ( ( ph /\ b e. D ) -> S e. CRing )
42 13 adantr
 |-  ( ( ph /\ b e. D ) -> A e. ( K ^m I ) )
43 simpr
 |-  ( ( ph /\ b e. D ) -> b e. D )
44 1 5 6 7 40 41 42 43 evlsvvvallem
 |-  ( ( ph /\ b e. D ) -> ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) e. K )
45 39 44 sylan2
 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) e. K )
46 5 8 30 38 45 ringlzd
 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( ( 0g ` S ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( 0g ` S ) )
47 36 46 eqtrd
 |-  ( ( ph /\ b e. ( D \ ( F supp ( 0g ` U ) ) ) ) -> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) = ( 0g ` S ) )
48 15 a1i
 |-  ( ph -> D e. _V )
49 47 48 suppss2
 |-  ( ph -> ( ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) supp ( 0g ` S ) ) C_ ( F supp ( 0g ` U ) ) )
50 17 18 20 24 49 fsuppsssuppgd
 |-  ( ph -> ( b e. D |-> ( ( F ` b ) .x. ( M gsum ( v e. I |-> ( ( b ` v ) .^ ( A ` v ) ) ) ) ) ) finSupp ( 0g ` S ) )