| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlsvvvallem2.d |
|
| 2 |
|
evlsvvvallem2.p |
|
| 3 |
|
evlsvvvallem2.u |
|
| 4 |
|
evlsvvvallem2.b |
|
| 5 |
|
evlsvvvallem2.k |
|
| 6 |
|
evlsvvvallem2.m |
|
| 7 |
|
evlsvvvallem2.w |
|
| 8 |
|
evlsvvvallem2.x |
|
| 9 |
|
evlsvvvallem2.i |
|
| 10 |
|
evlsvvvallem2.s |
|
| 11 |
|
evlsvvvallem2.r |
|
| 12 |
|
evlsvvvallem2.f |
|
| 13 |
|
evlsvvvallem2.a |
|
| 14 |
|
ovex |
|
| 15 |
1 14
|
rabex2 |
|
| 16 |
15
|
mptex |
|
| 17 |
16
|
a1i |
|
| 18 |
|
fvexd |
|
| 19 |
|
funmpt |
|
| 20 |
19
|
a1i |
|
| 21 |
|
eqid |
|
| 22 |
2 4 21 12
|
mplelsfi |
|
| 23 |
|
eqid |
|
| 24 |
2 23 4 1 12
|
mplelf |
|
| 25 |
|
ssidd |
|
| 26 |
|
fvexd |
|
| 27 |
24 25 12 26
|
suppssrg |
|
| 28 |
|
eqid |
|
| 29 |
3 28
|
subrg0 |
|
| 30 |
11 29
|
syl |
|
| 31 |
30
|
eqcomd |
|
| 32 |
31
|
adantr |
|
| 33 |
27 32
|
eqtrd |
|
| 34 |
33
|
oveq1d |
|
| 35 |
10
|
crngringd |
|
| 36 |
35
|
adantr |
|
| 37 |
|
eldifi |
|
| 38 |
9
|
adantr |
|
| 39 |
10
|
adantr |
|
| 40 |
13
|
adantr |
|
| 41 |
|
simpr |
|
| 42 |
1 5 6 7 38 39 40 41
|
evlsvvvallem |
|
| 43 |
37 42
|
sylan2 |
|
| 44 |
5 8 28 36 43
|
ringlzd |
|
| 45 |
34 44
|
eqtrd |
|
| 46 |
15
|
a1i |
|
| 47 |
45 46
|
suppss2 |
|
| 48 |
17 18 20 22 47
|
fsuppsssuppgd |
|