Metamath Proof Explorer


Theorem suppssrg

Description: A function is zero outside its support. Version of suppssr avoiding ax-rep by assuming F is a set rather than its domain A . (Contributed by SN, 5-May-2024)

Ref Expression
Hypotheses suppssrg.f φF:AB
suppssrg.n φFsuppZW
suppssrg.a φFV
suppssrg.z φZU
Assertion suppssrg φXAWFX=Z

Proof

Step Hyp Ref Expression
1 suppssrg.f φF:AB
2 suppssrg.n φFsuppZW
3 suppssrg.a φFV
4 suppssrg.z φZU
5 eldif XAWXA¬XW
6 1 ffnd φFFnA
7 elsuppfng FFnAFVZUXsuppZFXAFXZ
8 6 3 4 7 syl3anc φXsuppZFXAFXZ
9 2 sseld φXsuppZFXW
10 8 9 sylbird φXAFXZXW
11 10 expdimp φXAFXZXW
12 11 necon1bd φXA¬XWFX=Z
13 12 impr φXA¬XWFX=Z
14 5 13 sylan2b φXAWFX=Z