Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | suppssov1.s | |
|
suppssov1.o | |
||
suppssov1.a | |
||
suppssov1.b | |
||
suppssov1.y | |
||
Assertion | suppssov1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssov1.s | |
|
2 | suppssov1.o | |
|
3 | suppssov1.a | |
|
4 | suppssov1.b | |
|
5 | suppssov1.y | |
|
6 | 3 | elexd | |
7 | 6 | adantll | |
8 | 7 | adantr | |
9 | oveq2 | |
|
10 | 9 | eqeq1d | |
11 | 2 | ralrimiva | |
12 | 11 | adantl | |
13 | 12 | adantr | |
14 | 4 | adantll | |
15 | 10 13 14 | rspcdva | |
16 | oveq1 | |
|
17 | 16 | eqeq1d | |
18 | 15 17 | syl5ibrcom | |
19 | 18 | necon3d | |
20 | eldifsni | |
|
21 | 19 20 | impel | |
22 | eldifsn | |
|
23 | 8 21 22 | sylanbrc | |
24 | 23 | ex | |
25 | 24 | ss2rabdv | |
26 | eqid | |
|
27 | simpll | |
|
28 | simplr | |
|
29 | 26 27 28 | mptsuppdifd | |
30 | eqid | |
|
31 | 5 | adantl | |
32 | 30 27 31 | mptsuppdifd | |
33 | 25 29 32 | 3sstr4d | |
34 | 1 | adantl | |
35 | 33 34 | sstrd | |
36 | 35 | ex | |
37 | mptexg | |
|
38 | ovex | |
|
39 | 38 | rgenw | |
40 | dmmptg | |
|
41 | 39 40 | ax-mp | |
42 | dmexg | |
|
43 | 41 42 | eqeltrrid | |
44 | 37 43 | impbii | |
45 | 44 | anbi1i | |
46 | supp0prc | |
|
47 | 45 46 | sylnbi | |
48 | 0ss | |
|
49 | 47 48 | eqsstrdi | |
50 | 49 | a1d | |
51 | 36 50 | pm2.61i | |