Metamath Proof Explorer


Theorem suppssov1

Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019)

Ref Expression
Hypotheses suppssov1.s φxDAsuppYL
suppssov1.o φvRYOv=Z
suppssov1.a φxDAV
suppssov1.b φxDBR
suppssov1.y φYW
Assertion suppssov1 φxDAOBsuppZL

Proof

Step Hyp Ref Expression
1 suppssov1.s φxDAsuppYL
2 suppssov1.o φvRYOv=Z
3 suppssov1.a φxDAV
4 suppssov1.b φxDBR
5 suppssov1.y φYW
6 3 elexd φxDAV
7 6 adantll DVZVφxDAV
8 7 adantr DVZVφxDAOBVZAV
9 oveq2 v=BYOv=YOB
10 9 eqeq1d v=BYOv=ZYOB=Z
11 2 ralrimiva φvRYOv=Z
12 11 adantl DVZVφvRYOv=Z
13 12 adantr DVZVφxDvRYOv=Z
14 4 adantll DVZVφxDBR
15 10 13 14 rspcdva DVZVφxDYOB=Z
16 oveq1 A=YAOB=YOB
17 16 eqeq1d A=YAOB=ZYOB=Z
18 15 17 syl5ibrcom DVZVφxDA=YAOB=Z
19 18 necon3d DVZVφxDAOBZAY
20 eldifsni AOBVZAOBZ
21 19 20 impel DVZVφxDAOBVZAY
22 eldifsn AVYAVAY
23 8 21 22 sylanbrc DVZVφxDAOBVZAVY
24 23 ex DVZVφxDAOBVZAVY
25 24 ss2rabdv DVZVφxD|AOBVZxD|AVY
26 eqid xDAOB=xDAOB
27 simpll DVZVφDV
28 simplr DVZVφZV
29 26 27 28 mptsuppdifd DVZVφxDAOBsuppZ=xD|AOBVZ
30 eqid xDA=xDA
31 5 adantl DVZVφYW
32 30 27 31 mptsuppdifd DVZVφxDAsuppY=xD|AVY
33 25 29 32 3sstr4d DVZVφxDAOBsuppZxDAsuppY
34 1 adantl DVZVφxDAsuppYL
35 33 34 sstrd DVZVφxDAOBsuppZL
36 35 ex DVZVφxDAOBsuppZL
37 mptexg DVxDAOBV
38 ovex AOBV
39 38 rgenw xDAOBV
40 dmmptg xDAOBVdomxDAOB=D
41 39 40 ax-mp domxDAOB=D
42 dmexg xDAOBVdomxDAOBV
43 41 42 eqeltrrid xDAOBVDV
44 37 43 impbii DVxDAOBV
45 44 anbi1i DVZVxDAOBVZV
46 supp0prc ¬xDAOBVZVxDAOBsuppZ=
47 45 46 sylnbi ¬DVZVxDAOBsuppZ=
48 0ss L
49 47 48 eqsstrdi ¬DVZVxDAOBsuppZL
50 49 a1d ¬DVZVφxDAOBsuppZL
51 36 50 pm2.61i φxDAOBsuppZL