Step |
Hyp |
Ref |
Expression |
1 |
|
suppssrg.f |
|- ( ph -> F : A --> B ) |
2 |
|
suppssrg.n |
|- ( ph -> ( F supp Z ) C_ W ) |
3 |
|
suppssrg.a |
|- ( ph -> F e. V ) |
4 |
|
suppssrg.z |
|- ( ph -> Z e. U ) |
5 |
|
eldif |
|- ( X e. ( A \ W ) <-> ( X e. A /\ -. X e. W ) ) |
6 |
1
|
ffnd |
|- ( ph -> F Fn A ) |
7 |
|
elsuppfng |
|- ( ( F Fn A /\ F e. V /\ Z e. U ) -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
8 |
6 3 4 7
|
syl3anc |
|- ( ph -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
9 |
2
|
sseld |
|- ( ph -> ( X e. ( F supp Z ) -> X e. W ) ) |
10 |
8 9
|
sylbird |
|- ( ph -> ( ( X e. A /\ ( F ` X ) =/= Z ) -> X e. W ) ) |
11 |
10
|
expdimp |
|- ( ( ph /\ X e. A ) -> ( ( F ` X ) =/= Z -> X e. W ) ) |
12 |
11
|
necon1bd |
|- ( ( ph /\ X e. A ) -> ( -. X e. W -> ( F ` X ) = Z ) ) |
13 |
12
|
impr |
|- ( ( ph /\ ( X e. A /\ -. X e. W ) ) -> ( F ` X ) = Z ) |
14 |
5 13
|
sylan2b |
|- ( ( ph /\ X e. ( A \ W ) ) -> ( F ` X ) = Z ) |