| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlsvvvallem2.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 2 |
|
evlsvvvallem2.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) |
| 3 |
|
evlsvvvallem2.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
| 4 |
|
evlsvvvallem2.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 5 |
|
evlsvvvallem2.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 6 |
|
evlsvvvallem2.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) |
| 7 |
|
evlsvvvallem2.w |
⊢ ↑ = ( .g ‘ 𝑀 ) |
| 8 |
|
evlsvvvallem2.x |
⊢ · = ( .r ‘ 𝑆 ) |
| 9 |
|
evlsvvvallem2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 10 |
|
evlsvvvallem2.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 11 |
|
evlsvvvallem2.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 12 |
|
evlsvvvallem2.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 13 |
|
evlsvvvallem2.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 14 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 15 |
1 14
|
rabex2 |
⊢ 𝐷 ∈ V |
| 16 |
15
|
mptex |
⊢ ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ∈ V |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ∈ V ) |
| 18 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ V ) |
| 19 |
|
funmpt |
⊢ Fun ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) ) |
| 21 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 22 |
2 4 21 12
|
mplelsfi |
⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝑈 ) ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 24 |
2 23 4 1 12
|
mplelf |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) ) |
| 25 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ⊆ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) |
| 26 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ V ) |
| 27 |
24 25 12 26
|
suppssrg |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑈 ) ) |
| 28 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 29 |
3 28
|
subrg0 |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 30 |
11 29
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 31 |
30
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑆 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑆 ) ) |
| 33 |
27 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑆 ) ) |
| 34 |
33
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( ( 0g ‘ 𝑆 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) |
| 35 |
10
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → 𝑆 ∈ Ring ) |
| 37 |
|
eldifi |
⊢ ( 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) → 𝑏 ∈ 𝐷 ) |
| 38 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
| 39 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ CRing ) |
| 40 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ 𝐷 ) |
| 42 |
1 5 6 7 38 39 40 41
|
evlsvvvallem |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
| 43 |
37 42
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
| 44 |
5 8 28 36 43
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( 0g ‘ 𝑆 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
| 45 |
34 44
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
| 46 |
15
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 47 |
45 46
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) |
| 48 |
17 18 20 22 47
|
fsuppsssuppgd |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |