| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlsvvval.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
| 2 |
|
evlsvvval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) |
| 3 |
|
evlsvvval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
evlsvvval.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
| 5 |
|
evlsvvval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 6 |
|
evlsvvval.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 7 |
|
evlsvvval.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) |
| 8 |
|
evlsvvval.w |
⊢ ↑ = ( .g ‘ 𝑀 ) |
| 9 |
|
evlsvvval.x |
⊢ · = ( .r ‘ 𝑆 ) |
| 10 |
|
evlsvvval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 11 |
|
evlsvvval.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 12 |
|
evlsvvval.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 13 |
|
evlsvvval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 14 |
|
evlsvvval.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 15 |
|
fveq1 |
⊢ ( 𝑙 = 𝐴 → ( 𝑙 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑖 ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑙 = 𝐴 → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) = ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) |
| 17 |
16
|
mpteq2dv |
⊢ ( 𝑙 = 𝐴 → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑙 = 𝐴 → ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) = ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝑙 = 𝐴 → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) = ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
| 20 |
19
|
mpteq2dv |
⊢ ( 𝑙 = 𝐴 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑙 = 𝐴 → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 22 |
|
eqid |
⊢ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) |
| 23 |
|
eqid |
⊢ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
| 24 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) = ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 25 |
|
eqid |
⊢ ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
| 26 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) |
| 27 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) |
| 28 |
1 2 3 5 6 4 22 23 24 25 26 27 10 11 12 13
|
evlsvval |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) = ( ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) Σg ( 𝑏 ∈ 𝐷 ↦ ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) ) |
| 29 |
|
sneq |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑏 ) → { 𝑥 } = { ( 𝐹 ‘ 𝑏 ) } ) |
| 30 |
29
|
xpeq2d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) = ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ) |
| 31 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 32 |
2 31 3 5 13
|
mplelf |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) ) |
| 33 |
4
|
subrgbas |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 34 |
12 33
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 35 |
34
|
feq3d |
⊢ ( 𝜑 → ( 𝐹 : 𝐷 ⟶ 𝑅 ↔ 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) ) ) |
| 36 |
32 35
|
mpbird |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝑅 ) |
| 37 |
36
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑅 ) |
| 38 |
|
ovex |
⊢ ( 𝐾 ↑m 𝐼 ) ∈ V |
| 39 |
|
snex |
⊢ { ( 𝐹 ‘ 𝑏 ) } ∈ V |
| 40 |
38 39
|
xpex |
⊢ ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ∈ V |
| 41 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ∈ V ) |
| 42 |
26 30 37 41
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ) |
| 43 |
5
|
psrbagf |
⊢ ( 𝑏 ∈ 𝐷 → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 45 |
44
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 Fn 𝐼 ) |
| 46 |
38
|
mptex |
⊢ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ∈ V |
| 47 |
46 27
|
fnmpti |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) Fn 𝐼 |
| 48 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) Fn 𝐼 ) |
| 49 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
| 50 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
| 51 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑖 ) = ( 𝑏 ‘ 𝑖 ) ) |
| 52 |
|
fveq2 |
⊢ ( 𝑥 = 𝑖 → ( 𝑎 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑖 ) ) |
| 53 |
52
|
mpteq2dv |
⊢ ( 𝑥 = 𝑖 → ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) = ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) |
| 54 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
| 55 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
| 56 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → 𝑆 ∈ CRing ) |
| 57 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝐾 ↑m 𝐼 ) ∈ V ) |
| 58 |
|
elmapi |
⊢ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) → 𝑎 : 𝐼 ⟶ 𝐾 ) |
| 59 |
58
|
ffvelcdmda |
⊢ ( ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑖 ) ∈ 𝐾 ) |
| 60 |
59
|
ancoms |
⊢ ( ( 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑎 ‘ 𝑖 ) ∈ 𝐾 ) |
| 61 |
60
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑎 ‘ 𝑖 ) ∈ 𝐾 ) |
| 62 |
61
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 63 |
22 6 55 56 57 62
|
pwselbasr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 64 |
27 53 54 63
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ‘ 𝑖 ) = ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) |
| 65 |
45 48 49 49 50 51 64
|
offval |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) ) ) |
| 66 |
23 55
|
mgpbas |
⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 67 |
11
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 68 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) |
| 69 |
22
|
pwsring |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) → ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ∈ Ring ) |
| 70 |
67 68 69
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ∈ Ring ) |
| 71 |
23
|
ringmgp |
⊢ ( ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ∈ Ring → ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∈ Mnd ) |
| 72 |
70 71
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∈ Mnd ) |
| 73 |
72
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∈ Mnd ) |
| 74 |
44
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑖 ) ∈ ℕ0 ) |
| 75 |
66 24 73 74 63
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 76 |
22 6 55 56 57 75
|
pwselbas |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 77 |
76
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 78 |
|
ovex |
⊢ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ∈ V |
| 79 |
|
eqid |
⊢ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) = ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) |
| 80 |
78 79
|
fnmpti |
⊢ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) Fn ( 𝐾 ↑m 𝐼 ) |
| 81 |
80
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 82 |
|
eqid |
⊢ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) = ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) |
| 83 |
|
fveq1 |
⊢ ( 𝑎 = 𝑝 → ( 𝑎 ‘ 𝑖 ) = ( 𝑝 ‘ 𝑖 ) ) |
| 84 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 85 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑝 ‘ 𝑖 ) ∈ V ) |
| 86 |
82 83 84 85
|
fvmptd3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ‘ 𝑝 ) = ( 𝑝 ‘ 𝑖 ) ) |
| 87 |
86
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ‘ 𝑝 ) ) = ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑝 ‘ 𝑖 ) ) ) |
| 88 |
67
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑆 ∈ Ring ) |
| 89 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝐾 ↑m 𝐼 ) ∈ V ) |
| 90 |
74
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑏 ‘ 𝑖 ) ∈ ℕ0 ) |
| 91 |
63
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 92 |
22 55 23 7 24 8 88 89 90 91 84
|
pwsexpg |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) ‘ 𝑝 ) = ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ‘ 𝑝 ) ) ) |
| 93 |
|
fveq1 |
⊢ ( 𝑚 = 𝑝 → ( 𝑚 ‘ 𝑖 ) = ( 𝑝 ‘ 𝑖 ) ) |
| 94 |
93
|
oveq2d |
⊢ ( 𝑚 = 𝑝 → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) = ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑝 ‘ 𝑖 ) ) ) |
| 95 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑝 ‘ 𝑖 ) ) ∈ V ) |
| 96 |
79 94 84 95
|
fvmptd3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ‘ 𝑝 ) = ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑝 ‘ 𝑖 ) ) ) |
| 97 |
87 92 96
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) ‘ 𝑝 ) = ( ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ‘ 𝑝 ) ) |
| 98 |
77 81 97
|
eqfnfvd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) = ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) |
| 99 |
98
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) |
| 100 |
65 99
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) |
| 101 |
100
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) |
| 102 |
|
eqid |
⊢ ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
| 103 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐾 ↑m 𝐼 ) ∈ V ) |
| 104 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ CRing ) |
| 105 |
7 6
|
mgpbas |
⊢ 𝐾 = ( Base ‘ 𝑀 ) |
| 106 |
7
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → 𝑀 ∈ Mnd ) |
| 107 |
67 106
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 108 |
107
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑖 ∈ 𝐼 ) ) → 𝑀 ∈ Mnd ) |
| 109 |
74
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑖 ∈ 𝐼 ) ) → ( 𝑏 ‘ 𝑖 ) ∈ ℕ0 ) |
| 110 |
|
elmapi |
⊢ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) → 𝑚 : 𝐼 ⟶ 𝐾 ) |
| 111 |
110
|
ffvelcdmda |
⊢ ( ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑚 ‘ 𝑖 ) ∈ 𝐾 ) |
| 112 |
111
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑖 ∈ 𝐼 ) ) → ( 𝑚 ‘ 𝑖 ) ∈ 𝐾 ) |
| 113 |
105 8 108 109 112
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑖 ∈ 𝐼 ) ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ∈ 𝐾 ) |
| 114 |
49
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ∈ V ) |
| 115 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∈ V ) |
| 116 |
|
funmpt |
⊢ Fun ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) |
| 117 |
116
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → Fun ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) |
| 118 |
5
|
psrbagfsupp |
⊢ ( 𝑏 ∈ 𝐷 → 𝑏 finSupp 0 ) |
| 119 |
118
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 finSupp 0 ) |
| 120 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 supp 0 ) ⊆ ( 𝑏 supp 0 ) ) |
| 121 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 0 ∈ ℂ ) |
| 122 |
44 120 49 121
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) → ( 𝑏 ‘ 𝑖 ) = 0 ) |
| 123 |
122
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) = ( 0 ↑ ( 𝑚 ‘ 𝑖 ) ) ) |
| 124 |
123
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) = ( 0 ↑ ( 𝑚 ‘ 𝑖 ) ) ) |
| 125 |
|
eldifi |
⊢ ( 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) → 𝑖 ∈ 𝐼 ) |
| 126 |
125 111
|
sylan2 |
⊢ ( ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) → ( 𝑚 ‘ 𝑖 ) ∈ 𝐾 ) |
| 127 |
126
|
ancoms |
⊢ ( ( 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑚 ‘ 𝑖 ) ∈ 𝐾 ) |
| 128 |
127
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑚 ‘ 𝑖 ) ∈ 𝐾 ) |
| 129 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 130 |
7 129
|
ringidval |
⊢ ( 1r ‘ 𝑆 ) = ( 0g ‘ 𝑀 ) |
| 131 |
105 130 8
|
mulg0 |
⊢ ( ( 𝑚 ‘ 𝑖 ) ∈ 𝐾 → ( 0 ↑ ( 𝑚 ‘ 𝑖 ) ) = ( 1r ‘ 𝑆 ) ) |
| 132 |
128 131
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 0 ↑ ( 𝑚 ‘ 𝑖 ) ) = ( 1r ‘ 𝑆 ) ) |
| 133 |
124 132
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) = ( 1r ‘ 𝑆 ) ) |
| 134 |
133
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) → ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) = ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 1r ‘ 𝑆 ) ) ) |
| 135 |
|
fconstmpt |
⊢ ( ( 𝐾 ↑m 𝐼 ) × { ( 1r ‘ 𝑆 ) } ) = ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 1r ‘ 𝑆 ) ) |
| 136 |
22 129
|
pws1 |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) → ( ( 𝐾 ↑m 𝐼 ) × { ( 1r ‘ 𝑆 ) } ) = ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 137 |
67 68 136
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 ↑m 𝐼 ) × { ( 1r ‘ 𝑆 ) } ) = ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 138 |
137
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) → ( ( 𝐾 ↑m 𝐼 ) × { ( 1r ‘ 𝑆 ) } ) = ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 139 |
135 138
|
eqtr3id |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) → ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 1r ‘ 𝑆 ) ) = ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 140 |
134 139
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) → ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) = ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 141 |
140 49
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) supp ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ⊆ ( 𝑏 supp 0 ) ) |
| 142 |
114 115 117 119 141
|
fsuppsssuppgd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) finSupp ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 143 |
22 6 102 23 7 103 49 104 113 142
|
pwsgprod |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) = ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) |
| 144 |
101 143
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) |
| 145 |
42 144
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) = ( ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) ) |
| 146 |
6
|
subrgss |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
| 147 |
33 146
|
eqsstrrd |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
| 148 |
12 147
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
| 149 |
32 148
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝐾 ) |
| 150 |
149
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐾 ) |
| 151 |
|
fconst6g |
⊢ ( ( 𝐹 ‘ 𝑏 ) ∈ 𝐾 → ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 152 |
150 151
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 153 |
22 6 55 104 103 152
|
pwselbasr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 154 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝐼 ∈ 𝑉 ) |
| 155 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑆 ∈ CRing ) |
| 156 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 157 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑏 ∈ 𝐷 ) |
| 158 |
5 6 7 8 154 155 156 157
|
evlsvvvallem |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ∈ 𝐾 ) |
| 159 |
158
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 160 |
22 6 55 104 103 159
|
pwselbasr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 161 |
22 55 104 103 153 160 9 25
|
pwsmulrval |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) = ( ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ∘f · ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) ) |
| 162 |
152
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 163 |
|
ovex |
⊢ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ∈ V |
| 164 |
|
eqid |
⊢ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) = ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) |
| 165 |
163 164
|
fnmpti |
⊢ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) Fn ( 𝐾 ↑m 𝐼 ) |
| 166 |
165
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 167 |
|
inidm |
⊢ ( ( 𝐾 ↑m 𝐼 ) ∩ ( 𝐾 ↑m 𝐼 ) ) = ( 𝐾 ↑m 𝐼 ) |
| 168 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑏 ) ∈ V |
| 169 |
168
|
fvconst2 |
⊢ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) → ( ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ‘ 𝑙 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 170 |
169
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ‘ 𝑙 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 171 |
|
fveq1 |
⊢ ( 𝑚 = 𝑙 → ( 𝑚 ‘ 𝑖 ) = ( 𝑙 ‘ 𝑖 ) ) |
| 172 |
171
|
oveq2d |
⊢ ( 𝑚 = 𝑙 → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) = ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) |
| 173 |
172
|
mpteq2dv |
⊢ ( 𝑚 = 𝑙 → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) |
| 174 |
173
|
oveq2d |
⊢ ( 𝑚 = 𝑙 → ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) = ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) |
| 175 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 176 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝐼 ∈ 𝑉 ) |
| 177 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑆 ∈ CRing ) |
| 178 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑏 ∈ 𝐷 ) |
| 179 |
5 6 7 8 176 177 175 178
|
evlsvvvallem |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ∈ 𝐾 ) |
| 180 |
164 174 175 179
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ‘ 𝑙 ) = ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) |
| 181 |
162 166 103 103 167 170 180
|
offval |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ∘f · ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) = ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) |
| 182 |
145 161 181
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) |
| 183 |
182
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 184 |
183
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) Σg ( 𝑏 ∈ 𝐷 ↦ ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) = ( ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) Σg ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 185 |
|
eqid |
⊢ ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) |
| 186 |
|
ovexd |
⊢ ( 𝜑 → ( ℕ0 ↑m 𝐼 ) ∈ V ) |
| 187 |
5 186
|
rabexd |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 188 |
67
|
ringcmnd |
⊢ ( 𝜑 → 𝑆 ∈ CMnd ) |
| 189 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑏 ∈ 𝐷 ) ) → 𝑆 ∈ Ring ) |
| 190 |
150
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑏 ∈ 𝐷 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐾 ) |
| 191 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑏 ∈ 𝐷 ) ) → 𝜑 ) |
| 192 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑏 ∈ 𝐷 ) ) → 𝑏 ∈ 𝐷 ) |
| 193 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑏 ∈ 𝐷 ) ) → 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 194 |
191 192 193 179
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑏 ∈ 𝐷 ) ) → ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ∈ 𝐾 ) |
| 195 |
6 9 189 190 194
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑏 ∈ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ∈ 𝐾 ) |
| 196 |
187
|
mptexd |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ∈ V ) |
| 197 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∈ V ) |
| 198 |
|
funmpt |
⊢ Fun ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) |
| 199 |
198
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 200 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 201 |
2 3 200 13
|
mplelsfi |
⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝑈 ) ) |
| 202 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ⊆ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) |
| 203 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ V ) |
| 204 |
149 202 187 203
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑈 ) ) |
| 205 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 206 |
4 205
|
subrg0 |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 207 |
12 206
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 208 |
207
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 209 |
204 208
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑆 ) ) |
| 210 |
209
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑆 ) ) |
| 211 |
210
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) = ( ( 0g ‘ 𝑆 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) |
| 212 |
67
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑆 ∈ Ring ) |
| 213 |
|
eldifi |
⊢ ( 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) → 𝑏 ∈ 𝐷 ) |
| 214 |
213 179
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ∈ 𝐾 ) |
| 215 |
6 9 205 212 214
|
ringlzd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 0g ‘ 𝑆 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
| 216 |
211 215
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
| 217 |
216
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) = ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 0g ‘ 𝑆 ) ) ) |
| 218 |
|
fconstmpt |
⊢ ( ( 𝐾 ↑m 𝐼 ) × { ( 0g ‘ 𝑆 ) } ) = ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 0g ‘ 𝑆 ) ) |
| 219 |
188
|
cmnmndd |
⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
| 220 |
22 205
|
pws0g |
⊢ ( ( 𝑆 ∈ Mnd ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) → ( ( 𝐾 ↑m 𝐼 ) × { ( 0g ‘ 𝑆 ) } ) = ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 221 |
219 68 220
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 ↑m 𝐼 ) × { ( 0g ‘ 𝑆 ) } ) = ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 222 |
218 221
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 223 |
222
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 224 |
217 223
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) = ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 225 |
224 187
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) supp ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ⊆ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) |
| 226 |
196 197 199 201 225
|
fsuppsssuppgd |
⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) finSupp ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 227 |
22 6 185 68 187 188 195 226
|
pwsgsum |
⊢ ( 𝜑 → ( ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) Σg ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) = ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 228 |
28 184 227
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) = ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 229 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ∈ V ) |
| 230 |
21 228 14 229
|
fvmptd4 |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |