| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlsvvvallem.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 2 |
|
evlsvvvallem.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 3 |
|
evlsvvvallem.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) |
| 4 |
|
evlsvvvallem.w |
⊢ ↑ = ( .g ‘ 𝑀 ) |
| 5 |
|
evlsvvvallem.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
evlsvvvallem.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 7 |
|
evlsvvvallem.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) |
| 8 |
|
evlsvvvallem.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
| 9 |
3 2
|
mgpbas |
⊢ 𝐾 = ( Base ‘ 𝑀 ) |
| 10 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 11 |
3 10
|
ringidval |
⊢ ( 1r ‘ 𝑆 ) = ( 0g ‘ 𝑀 ) |
| 12 |
3
|
crngmgp |
⊢ ( 𝑆 ∈ CRing → 𝑀 ∈ CMnd ) |
| 13 |
6 12
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
| 14 |
6
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 15 |
3
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → 𝑀 ∈ Mnd ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐼 ) → 𝑀 ∈ Mnd ) |
| 18 |
1
|
psrbagf |
⊢ ( 𝐵 ∈ 𝐷 → 𝐵 : 𝐼 ⟶ ℕ0 ) |
| 19 |
8 18
|
syl |
⊢ ( 𝜑 → 𝐵 : 𝐼 ⟶ ℕ0 ) |
| 20 |
19
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐼 ) → ( 𝐵 ‘ 𝑣 ) ∈ ℕ0 ) |
| 21 |
|
elmapi |
⊢ ( 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐾 ) |
| 22 |
7 21
|
syl |
⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐾 ) |
| 23 |
22
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 ) |
| 24 |
9 4 17 20 23
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ∈ 𝐾 ) |
| 25 |
24
|
fmpttd |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) : 𝐼 ⟶ 𝐾 ) |
| 26 |
5
|
mptexd |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ∈ V ) |
| 27 |
|
fvexd |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ V ) |
| 28 |
25
|
ffund |
⊢ ( 𝜑 → Fun ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) |
| 29 |
1
|
psrbagfsupp |
⊢ ( 𝐵 ∈ 𝐷 → 𝐵 finSupp 0 ) |
| 30 |
8 29
|
syl |
⊢ ( 𝜑 → 𝐵 finSupp 0 ) |
| 31 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐵 supp 0 ) ⊆ ( 𝐵 supp 0 ) ) |
| 32 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 33 |
19 31 5 32
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( 𝐵 ‘ 𝑣 ) = 0 ) |
| 34 |
33
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) = ( 0 ↑ ( 𝐴 ‘ 𝑣 ) ) ) |
| 35 |
|
eldifi |
⊢ ( 𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) → 𝑣 ∈ 𝐼 ) |
| 36 |
35 23
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 ) |
| 37 |
9 11 4
|
mulg0 |
⊢ ( ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 → ( 0 ↑ ( 𝐴 ‘ 𝑣 ) ) = ( 1r ‘ 𝑆 ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( 0 ↑ ( 𝐴 ‘ 𝑣 ) ) = ( 1r ‘ 𝑆 ) ) |
| 39 |
34 38
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) = ( 1r ‘ 𝑆 ) ) |
| 40 |
39 5
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) supp ( 1r ‘ 𝑆 ) ) ⊆ ( 𝐵 supp 0 ) ) |
| 41 |
26 27 28 30 40
|
fsuppsssuppgd |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) finSupp ( 1r ‘ 𝑆 ) ) |
| 42 |
9 11 13 5 25 41
|
gsumcl |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |