| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlsvvvallem.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 2 |
|
evlsvvvallem.k |
|- K = ( Base ` S ) |
| 3 |
|
evlsvvvallem.m |
|- M = ( mulGrp ` S ) |
| 4 |
|
evlsvvvallem.w |
|- .^ = ( .g ` M ) |
| 5 |
|
evlsvvvallem.i |
|- ( ph -> I e. V ) |
| 6 |
|
evlsvvvallem.s |
|- ( ph -> S e. CRing ) |
| 7 |
|
evlsvvvallem.a |
|- ( ph -> A e. ( K ^m I ) ) |
| 8 |
|
evlsvvvallem.b |
|- ( ph -> B e. D ) |
| 9 |
3 2
|
mgpbas |
|- K = ( Base ` M ) |
| 10 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 11 |
3 10
|
ringidval |
|- ( 1r ` S ) = ( 0g ` M ) |
| 12 |
3
|
crngmgp |
|- ( S e. CRing -> M e. CMnd ) |
| 13 |
6 12
|
syl |
|- ( ph -> M e. CMnd ) |
| 14 |
6
|
crngringd |
|- ( ph -> S e. Ring ) |
| 15 |
3
|
ringmgp |
|- ( S e. Ring -> M e. Mnd ) |
| 16 |
14 15
|
syl |
|- ( ph -> M e. Mnd ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ v e. I ) -> M e. Mnd ) |
| 18 |
1
|
psrbagf |
|- ( B e. D -> B : I --> NN0 ) |
| 19 |
8 18
|
syl |
|- ( ph -> B : I --> NN0 ) |
| 20 |
19
|
ffvelcdmda |
|- ( ( ph /\ v e. I ) -> ( B ` v ) e. NN0 ) |
| 21 |
|
elmapi |
|- ( A e. ( K ^m I ) -> A : I --> K ) |
| 22 |
7 21
|
syl |
|- ( ph -> A : I --> K ) |
| 23 |
22
|
ffvelcdmda |
|- ( ( ph /\ v e. I ) -> ( A ` v ) e. K ) |
| 24 |
9 4 17 20 23
|
mulgnn0cld |
|- ( ( ph /\ v e. I ) -> ( ( B ` v ) .^ ( A ` v ) ) e. K ) |
| 25 |
24
|
fmpttd |
|- ( ph -> ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) : I --> K ) |
| 26 |
5
|
mptexd |
|- ( ph -> ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) e. _V ) |
| 27 |
|
fvexd |
|- ( ph -> ( 1r ` S ) e. _V ) |
| 28 |
25
|
ffund |
|- ( ph -> Fun ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) |
| 29 |
1
|
psrbagfsupp |
|- ( B e. D -> B finSupp 0 ) |
| 30 |
8 29
|
syl |
|- ( ph -> B finSupp 0 ) |
| 31 |
|
ssidd |
|- ( ph -> ( B supp 0 ) C_ ( B supp 0 ) ) |
| 32 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 33 |
19 31 5 32
|
suppssr |
|- ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( B ` v ) = 0 ) |
| 34 |
33
|
oveq1d |
|- ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( ( B ` v ) .^ ( A ` v ) ) = ( 0 .^ ( A ` v ) ) ) |
| 35 |
|
eldifi |
|- ( v e. ( I \ ( B supp 0 ) ) -> v e. I ) |
| 36 |
35 23
|
sylan2 |
|- ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( A ` v ) e. K ) |
| 37 |
9 11 4
|
mulg0 |
|- ( ( A ` v ) e. K -> ( 0 .^ ( A ` v ) ) = ( 1r ` S ) ) |
| 38 |
36 37
|
syl |
|- ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( 0 .^ ( A ` v ) ) = ( 1r ` S ) ) |
| 39 |
34 38
|
eqtrd |
|- ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( ( B ` v ) .^ ( A ` v ) ) = ( 1r ` S ) ) |
| 40 |
39 5
|
suppss2 |
|- ( ph -> ( ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) supp ( 1r ` S ) ) C_ ( B supp 0 ) ) |
| 41 |
26 27 28 30 40
|
fsuppsssuppgd |
|- ( ph -> ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) finSupp ( 1r ` S ) ) |
| 42 |
9 11 13 5 25 41
|
gsumcl |
|- ( ph -> ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) e. K ) |