Metamath Proof Explorer


Theorem evlsvvvallem

Description: Lemma for evlsvvval akin to psrbagev2 . (Contributed by SN, 6-Mar-2025)

Ref Expression
Hypotheses evlsvvvallem.d
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
evlsvvvallem.k
|- K = ( Base ` S )
evlsvvvallem.m
|- M = ( mulGrp ` S )
evlsvvvallem.w
|- .^ = ( .g ` M )
evlsvvvallem.i
|- ( ph -> I e. V )
evlsvvvallem.s
|- ( ph -> S e. CRing )
evlsvvvallem.a
|- ( ph -> A e. ( K ^m I ) )
evlsvvvallem.b
|- ( ph -> B e. D )
Assertion evlsvvvallem
|- ( ph -> ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) e. K )

Proof

Step Hyp Ref Expression
1 evlsvvvallem.d
 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
2 evlsvvvallem.k
 |-  K = ( Base ` S )
3 evlsvvvallem.m
 |-  M = ( mulGrp ` S )
4 evlsvvvallem.w
 |-  .^ = ( .g ` M )
5 evlsvvvallem.i
 |-  ( ph -> I e. V )
6 evlsvvvallem.s
 |-  ( ph -> S e. CRing )
7 evlsvvvallem.a
 |-  ( ph -> A e. ( K ^m I ) )
8 evlsvvvallem.b
 |-  ( ph -> B e. D )
9 3 2 mgpbas
 |-  K = ( Base ` M )
10 eqid
 |-  ( 1r ` S ) = ( 1r ` S )
11 3 10 ringidval
 |-  ( 1r ` S ) = ( 0g ` M )
12 3 crngmgp
 |-  ( S e. CRing -> M e. CMnd )
13 6 12 syl
 |-  ( ph -> M e. CMnd )
14 6 crngringd
 |-  ( ph -> S e. Ring )
15 3 ringmgp
 |-  ( S e. Ring -> M e. Mnd )
16 14 15 syl
 |-  ( ph -> M e. Mnd )
17 16 adantr
 |-  ( ( ph /\ v e. I ) -> M e. Mnd )
18 1 psrbagf
 |-  ( B e. D -> B : I --> NN0 )
19 8 18 syl
 |-  ( ph -> B : I --> NN0 )
20 19 ffvelcdmda
 |-  ( ( ph /\ v e. I ) -> ( B ` v ) e. NN0 )
21 elmapi
 |-  ( A e. ( K ^m I ) -> A : I --> K )
22 7 21 syl
 |-  ( ph -> A : I --> K )
23 22 ffvelcdmda
 |-  ( ( ph /\ v e. I ) -> ( A ` v ) e. K )
24 9 4 17 20 23 mulgnn0cld
 |-  ( ( ph /\ v e. I ) -> ( ( B ` v ) .^ ( A ` v ) ) e. K )
25 24 fmpttd
 |-  ( ph -> ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) : I --> K )
26 5 mptexd
 |-  ( ph -> ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) e. _V )
27 fvexd
 |-  ( ph -> ( 1r ` S ) e. _V )
28 25 ffund
 |-  ( ph -> Fun ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) )
29 1 psrbagfsupp
 |-  ( B e. D -> B finSupp 0 )
30 8 29 syl
 |-  ( ph -> B finSupp 0 )
31 ssidd
 |-  ( ph -> ( B supp 0 ) C_ ( B supp 0 ) )
32 0zd
 |-  ( ph -> 0 e. ZZ )
33 19 31 5 32 suppssr
 |-  ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( B ` v ) = 0 )
34 33 oveq1d
 |-  ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( ( B ` v ) .^ ( A ` v ) ) = ( 0 .^ ( A ` v ) ) )
35 eldifi
 |-  ( v e. ( I \ ( B supp 0 ) ) -> v e. I )
36 35 23 sylan2
 |-  ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( A ` v ) e. K )
37 9 11 4 mulg0
 |-  ( ( A ` v ) e. K -> ( 0 .^ ( A ` v ) ) = ( 1r ` S ) )
38 36 37 syl
 |-  ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( 0 .^ ( A ` v ) ) = ( 1r ` S ) )
39 34 38 eqtrd
 |-  ( ( ph /\ v e. ( I \ ( B supp 0 ) ) ) -> ( ( B ` v ) .^ ( A ` v ) ) = ( 1r ` S ) )
40 39 5 suppss2
 |-  ( ph -> ( ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) supp ( 1r ` S ) ) C_ ( B supp 0 ) )
41 26 27 28 30 40 fsuppsssuppgd
 |-  ( ph -> ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) finSupp ( 1r ` S ) )
42 9 11 13 5 25 41 gsumcl
 |-  ( ph -> ( M gsum ( v e. I |-> ( ( B ` v ) .^ ( A ` v ) ) ) ) e. K )