| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrbagev2.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 2 |
|
psrbagev2.c |
|- C = ( Base ` T ) |
| 3 |
|
psrbagev2.x |
|- .x. = ( .g ` T ) |
| 4 |
|
psrbagev2.t |
|- ( ph -> T e. CMnd ) |
| 5 |
|
psrbagev2.b |
|- ( ph -> B e. D ) |
| 6 |
|
psrbagev2.g |
|- ( ph -> G : I --> C ) |
| 7 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
| 8 |
|
ovexd |
|- ( ph -> ( B oF .x. G ) e. _V ) |
| 9 |
1 2 3 7 4 5 6
|
psrbagev1 |
|- ( ph -> ( ( B oF .x. G ) : I --> C /\ ( B oF .x. G ) finSupp ( 0g ` T ) ) ) |
| 10 |
9
|
simpld |
|- ( ph -> ( B oF .x. G ) : I --> C ) |
| 11 |
10
|
ffnd |
|- ( ph -> ( B oF .x. G ) Fn I ) |
| 12 |
8 11
|
fndmexd |
|- ( ph -> I e. _V ) |
| 13 |
9
|
simprd |
|- ( ph -> ( B oF .x. G ) finSupp ( 0g ` T ) ) |
| 14 |
2 7 4 12 10 13
|
gsumcl |
|- ( ph -> ( T gsum ( B oF .x. G ) ) e. C ) |