Metamath Proof Explorer


Theorem psrbagev2

Description: Closure of a sum using a bag of multipliers. (Contributed by Stefan O'Rear, 9-Mar-2015) (Proof shortened by AV, 18-Jul-2019) (Revised by AV, 11-Apr-2024) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypotheses psrbagev2.d D=h0I|h-1Fin
psrbagev2.c C=BaseT
psrbagev2.x ·˙=T
psrbagev2.t φTCMnd
psrbagev2.b φBD
psrbagev2.g φG:IC
Assertion psrbagev2 φTB·˙fGC

Proof

Step Hyp Ref Expression
1 psrbagev2.d D=h0I|h-1Fin
2 psrbagev2.c C=BaseT
3 psrbagev2.x ·˙=T
4 psrbagev2.t φTCMnd
5 psrbagev2.b φBD
6 psrbagev2.g φG:IC
7 eqid 0T=0T
8 ovexd φB·˙fGV
9 1 2 3 7 4 5 6 psrbagev1 φB·˙fG:ICfinSupp0TB·˙fG
10 9 simpld φB·˙fG:IC
11 10 ffnd φB·˙fGFnI
12 8 11 fndmexd φIV
13 9 simprd φfinSupp0TB·˙fG
14 2 7 4 12 10 13 gsumcl φTB·˙fGC