Step |
Hyp |
Ref |
Expression |
1 |
|
evlsscaval.q |
⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) |
2 |
|
evlsscaval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) |
3 |
|
evlsscaval.u |
⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) |
4 |
|
evlsscaval.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
5 |
|
evlsscaval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
6 |
|
evlsscaval.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
7 |
|
evlsscaval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
8 |
|
evlsscaval.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
9 |
|
evlsscaval.r |
⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
10 |
|
evlsscaval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) |
11 |
|
evlsscaval.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐾 ↑m 𝐼 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
13 |
3
|
subrgring |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
14 |
9 13
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
15 |
2 5 12 6 7 14
|
mplasclf |
⊢ ( 𝜑 → 𝐴 : ( Base ‘ 𝑈 ) ⟶ 𝐵 ) |
16 |
3
|
subrgbas |
⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
17 |
9 16
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
18 |
10 17
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑈 ) ) |
19 |
15 18
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) |
20 |
1 2 3 4 6 7 8 9 10
|
evlssca |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐾 ↑m 𝐼 ) × { 𝑋 } ) ) |
21 |
20
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐿 ) = ( ( ( 𝐾 ↑m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) ) |
22 |
|
fvconst2g |
⊢ ( ( 𝑋 ∈ 𝑅 ∧ 𝐿 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( ( 𝐾 ↑m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) = 𝑋 ) |
23 |
10 11 22
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐾 ↑m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) = 𝑋 ) |
24 |
21 23
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐿 ) = 𝑋 ) |
25 |
19 24
|
jca |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐿 ) = 𝑋 ) ) |