Metamath Proof Explorer


Theorem evlsscaval

Description: Polynomial evaluation builder for a scalar. Compare evl1scad . Note that scalar multiplication by X is the same as vector multiplication by ( AX ) by asclmul1 . (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses evlsscaval.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
evlsscaval.p 𝑃 = ( 𝐼 mPoly 𝑈 )
evlsscaval.u 𝑈 = ( 𝑆s 𝑅 )
evlsscaval.k 𝐾 = ( Base ‘ 𝑆 )
evlsscaval.b 𝐵 = ( Base ‘ 𝑃 )
evlsscaval.a 𝐴 = ( algSc ‘ 𝑃 )
evlsscaval.i ( 𝜑𝐼𝑉 )
evlsscaval.s ( 𝜑𝑆 ∈ CRing )
evlsscaval.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
evlsscaval.x ( 𝜑𝑋𝑅 )
evlsscaval.l ( 𝜑𝐿 ∈ ( 𝐾m 𝐼 ) )
Assertion evlsscaval ( 𝜑 → ( ( 𝐴𝑋 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝐴𝑋 ) ) ‘ 𝐿 ) = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 evlsscaval.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
2 evlsscaval.p 𝑃 = ( 𝐼 mPoly 𝑈 )
3 evlsscaval.u 𝑈 = ( 𝑆s 𝑅 )
4 evlsscaval.k 𝐾 = ( Base ‘ 𝑆 )
5 evlsscaval.b 𝐵 = ( Base ‘ 𝑃 )
6 evlsscaval.a 𝐴 = ( algSc ‘ 𝑃 )
7 evlsscaval.i ( 𝜑𝐼𝑉 )
8 evlsscaval.s ( 𝜑𝑆 ∈ CRing )
9 evlsscaval.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
10 evlsscaval.x ( 𝜑𝑋𝑅 )
11 evlsscaval.l ( 𝜑𝐿 ∈ ( 𝐾m 𝐼 ) )
12 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
13 3 subrgring ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring )
14 9 13 syl ( 𝜑𝑈 ∈ Ring )
15 2 5 12 6 7 14 mplasclf ( 𝜑𝐴 : ( Base ‘ 𝑈 ) ⟶ 𝐵 )
16 3 subrgbas ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) )
17 9 16 syl ( 𝜑𝑅 = ( Base ‘ 𝑈 ) )
18 10 17 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ 𝑈 ) )
19 15 18 ffvelrnd ( 𝜑 → ( 𝐴𝑋 ) ∈ 𝐵 )
20 1 2 3 4 6 7 8 9 10 evlssca ( 𝜑 → ( 𝑄 ‘ ( 𝐴𝑋 ) ) = ( ( 𝐾m 𝐼 ) × { 𝑋 } ) )
21 20 fveq1d ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴𝑋 ) ) ‘ 𝐿 ) = ( ( ( 𝐾m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) )
22 fvconst2g ( ( 𝑋𝑅𝐿 ∈ ( 𝐾m 𝐼 ) ) → ( ( ( 𝐾m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) = 𝑋 )
23 10 11 22 syl2anc ( 𝜑 → ( ( ( 𝐾m 𝐼 ) × { 𝑋 } ) ‘ 𝐿 ) = 𝑋 )
24 21 23 eqtrd ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴𝑋 ) ) ‘ 𝐿 ) = 𝑋 )
25 19 24 jca ( 𝜑 → ( ( 𝐴𝑋 ) ∈ 𝐵 ∧ ( ( 𝑄 ‘ ( 𝐴𝑋 ) ) ‘ 𝐿 ) = 𝑋 ) )