Metamath Proof Explorer


Theorem evlsscaval

Description: Polynomial evaluation builder for a scalar. Compare evl1scad . Note that scalar multiplication by X is the same as vector multiplication by ( AX ) by asclmul1 . (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses evlsscaval.q Q = I evalSub S R
evlsscaval.p P = I mPoly U
evlsscaval.u U = S 𝑠 R
evlsscaval.k K = Base S
evlsscaval.b B = Base P
evlsscaval.a A = algSc P
evlsscaval.i φ I V
evlsscaval.s φ S CRing
evlsscaval.r φ R SubRing S
evlsscaval.x φ X R
evlsscaval.l φ L K I
Assertion evlsscaval φ A X B Q A X L = X

Proof

Step Hyp Ref Expression
1 evlsscaval.q Q = I evalSub S R
2 evlsscaval.p P = I mPoly U
3 evlsscaval.u U = S 𝑠 R
4 evlsscaval.k K = Base S
5 evlsscaval.b B = Base P
6 evlsscaval.a A = algSc P
7 evlsscaval.i φ I V
8 evlsscaval.s φ S CRing
9 evlsscaval.r φ R SubRing S
10 evlsscaval.x φ X R
11 evlsscaval.l φ L K I
12 eqid Base U = Base U
13 3 subrgring R SubRing S U Ring
14 9 13 syl φ U Ring
15 2 5 12 6 7 14 mplasclf φ A : Base U B
16 3 subrgbas R SubRing S R = Base U
17 9 16 syl φ R = Base U
18 10 17 eleqtrd φ X Base U
19 15 18 ffvelrnd φ A X B
20 1 2 3 4 6 7 8 9 10 evlssca φ Q A X = K I × X
21 20 fveq1d φ Q A X L = K I × X L
22 fvconst2g X R L K I K I × X L = X
23 10 11 22 syl2anc φ K I × X L = X
24 21 23 eqtrd φ Q A X L = X
25 19 24 jca φ A X B Q A X L = X