Metamath Proof Explorer


Theorem evlsscaval

Description: Polynomial evaluation builder for a scalar. Compare evl1scad . Note that scalar multiplication by X is the same as vector multiplication by ( AX ) by asclmul1 . (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses evlsscaval.q
|- Q = ( ( I evalSub S ) ` R )
evlsscaval.p
|- P = ( I mPoly U )
evlsscaval.u
|- U = ( S |`s R )
evlsscaval.k
|- K = ( Base ` S )
evlsscaval.b
|- B = ( Base ` P )
evlsscaval.a
|- A = ( algSc ` P )
evlsscaval.i
|- ( ph -> I e. V )
evlsscaval.s
|- ( ph -> S e. CRing )
evlsscaval.r
|- ( ph -> R e. ( SubRing ` S ) )
evlsscaval.x
|- ( ph -> X e. R )
evlsscaval.l
|- ( ph -> L e. ( K ^m I ) )
Assertion evlsscaval
|- ( ph -> ( ( A ` X ) e. B /\ ( ( Q ` ( A ` X ) ) ` L ) = X ) )

Proof

Step Hyp Ref Expression
1 evlsscaval.q
 |-  Q = ( ( I evalSub S ) ` R )
2 evlsscaval.p
 |-  P = ( I mPoly U )
3 evlsscaval.u
 |-  U = ( S |`s R )
4 evlsscaval.k
 |-  K = ( Base ` S )
5 evlsscaval.b
 |-  B = ( Base ` P )
6 evlsscaval.a
 |-  A = ( algSc ` P )
7 evlsscaval.i
 |-  ( ph -> I e. V )
8 evlsscaval.s
 |-  ( ph -> S e. CRing )
9 evlsscaval.r
 |-  ( ph -> R e. ( SubRing ` S ) )
10 evlsscaval.x
 |-  ( ph -> X e. R )
11 evlsscaval.l
 |-  ( ph -> L e. ( K ^m I ) )
12 eqid
 |-  ( Base ` U ) = ( Base ` U )
13 3 subrgring
 |-  ( R e. ( SubRing ` S ) -> U e. Ring )
14 9 13 syl
 |-  ( ph -> U e. Ring )
15 2 5 12 6 7 14 mplasclf
 |-  ( ph -> A : ( Base ` U ) --> B )
16 3 subrgbas
 |-  ( R e. ( SubRing ` S ) -> R = ( Base ` U ) )
17 9 16 syl
 |-  ( ph -> R = ( Base ` U ) )
18 10 17 eleqtrd
 |-  ( ph -> X e. ( Base ` U ) )
19 15 18 ffvelrnd
 |-  ( ph -> ( A ` X ) e. B )
20 1 2 3 4 6 7 8 9 10 evlssca
 |-  ( ph -> ( Q ` ( A ` X ) ) = ( ( K ^m I ) X. { X } ) )
21 20 fveq1d
 |-  ( ph -> ( ( Q ` ( A ` X ) ) ` L ) = ( ( ( K ^m I ) X. { X } ) ` L ) )
22 fvconst2g
 |-  ( ( X e. R /\ L e. ( K ^m I ) ) -> ( ( ( K ^m I ) X. { X } ) ` L ) = X )
23 10 11 22 syl2anc
 |-  ( ph -> ( ( ( K ^m I ) X. { X } ) ` L ) = X )
24 21 23 eqtrd
 |-  ( ph -> ( ( Q ` ( A ` X ) ) ` L ) = X )
25 19 24 jca
 |-  ( ph -> ( ( A ` X ) e. B /\ ( ( Q ` ( A ` X ) ) ` L ) = X ) )