Metamath Proof Explorer


Theorem evlsvarval

Description: Polynomial evaluation builder for a variable. (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses evlsvarval.q
|- Q = ( ( I evalSub S ) ` R )
evlsvarval.p
|- P = ( I mPoly U )
evlsvarval.v
|- V = ( I mVar U )
evlsvarval.u
|- U = ( S |`s R )
evlsvarval.k
|- K = ( Base ` S )
evlsvarval.b
|- B = ( Base ` P )
evlsvarval.i
|- ( ph -> I e. W )
evlsvarval.s
|- ( ph -> S e. CRing )
evlsvarval.r
|- ( ph -> R e. ( SubRing ` S ) )
evlsvarval.x
|- ( ph -> X e. I )
evlsvarval.a
|- ( ph -> A e. ( K ^m I ) )
Assertion evlsvarval
|- ( ph -> ( ( V ` X ) e. B /\ ( ( Q ` ( V ` X ) ) ` A ) = ( A ` X ) ) )

Proof

Step Hyp Ref Expression
1 evlsvarval.q
 |-  Q = ( ( I evalSub S ) ` R )
2 evlsvarval.p
 |-  P = ( I mPoly U )
3 evlsvarval.v
 |-  V = ( I mVar U )
4 evlsvarval.u
 |-  U = ( S |`s R )
5 evlsvarval.k
 |-  K = ( Base ` S )
6 evlsvarval.b
 |-  B = ( Base ` P )
7 evlsvarval.i
 |-  ( ph -> I e. W )
8 evlsvarval.s
 |-  ( ph -> S e. CRing )
9 evlsvarval.r
 |-  ( ph -> R e. ( SubRing ` S ) )
10 evlsvarval.x
 |-  ( ph -> X e. I )
11 evlsvarval.a
 |-  ( ph -> A e. ( K ^m I ) )
12 4 subrgring
 |-  ( R e. ( SubRing ` S ) -> U e. Ring )
13 9 12 syl
 |-  ( ph -> U e. Ring )
14 2 3 6 7 13 10 mvrcl
 |-  ( ph -> ( V ` X ) e. B )
15 fveq1
 |-  ( g = A -> ( g ` X ) = ( A ` X ) )
16 1 3 4 5 7 8 9 10 evlsvar
 |-  ( ph -> ( Q ` ( V ` X ) ) = ( g e. ( K ^m I ) |-> ( g ` X ) ) )
17 fvexd
 |-  ( ph -> ( A ` X ) e. _V )
18 15 16 11 17 fvmptd4
 |-  ( ph -> ( ( Q ` ( V ` X ) ) ` A ) = ( A ` X ) )
19 14 18 jca
 |-  ( ph -> ( ( V ` X ) e. B /\ ( ( Q ` ( V ` X ) ) ` A ) = ( A ` X ) ) )