Step |
Hyp |
Ref |
Expression |
1 |
|
evlsvarval.q |
|- Q = ( ( I evalSub S ) ` R ) |
2 |
|
evlsvarval.p |
|- P = ( I mPoly U ) |
3 |
|
evlsvarval.v |
|- V = ( I mVar U ) |
4 |
|
evlsvarval.u |
|- U = ( S |`s R ) |
5 |
|
evlsvarval.k |
|- K = ( Base ` S ) |
6 |
|
evlsvarval.b |
|- B = ( Base ` P ) |
7 |
|
evlsvarval.i |
|- ( ph -> I e. W ) |
8 |
|
evlsvarval.s |
|- ( ph -> S e. CRing ) |
9 |
|
evlsvarval.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
10 |
|
evlsvarval.x |
|- ( ph -> X e. I ) |
11 |
|
evlsvarval.a |
|- ( ph -> A e. ( K ^m I ) ) |
12 |
4
|
subrgring |
|- ( R e. ( SubRing ` S ) -> U e. Ring ) |
13 |
9 12
|
syl |
|- ( ph -> U e. Ring ) |
14 |
2 3 6 7 13 10
|
mvrcl |
|- ( ph -> ( V ` X ) e. B ) |
15 |
|
fveq1 |
|- ( g = A -> ( g ` X ) = ( A ` X ) ) |
16 |
1 3 4 5 7 8 9 10
|
evlsvar |
|- ( ph -> ( Q ` ( V ` X ) ) = ( g e. ( K ^m I ) |-> ( g ` X ) ) ) |
17 |
|
fvexd |
|- ( ph -> ( A ` X ) e. _V ) |
18 |
15 16 11 17
|
fvmptd4 |
|- ( ph -> ( ( Q ` ( V ` X ) ) ` A ) = ( A ` X ) ) |
19 |
14 18
|
jca |
|- ( ph -> ( ( V ` X ) e. B /\ ( ( Q ` ( V ` X ) ) ` A ) = ( A ` X ) ) ) |