Metamath Proof Explorer


Theorem evlsvarval

Description: Polynomial evaluation builder for a variable. (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses evlsvarval.q Q = I evalSub S R
evlsvarval.p P = I mPoly U
evlsvarval.v V = I mVar U
evlsvarval.u U = S 𝑠 R
evlsvarval.k K = Base S
evlsvarval.b B = Base P
evlsvarval.i φ I W
evlsvarval.s φ S CRing
evlsvarval.r φ R SubRing S
evlsvarval.x φ X I
evlsvarval.a φ A K I
Assertion evlsvarval φ V X B Q V X A = A X

Proof

Step Hyp Ref Expression
1 evlsvarval.q Q = I evalSub S R
2 evlsvarval.p P = I mPoly U
3 evlsvarval.v V = I mVar U
4 evlsvarval.u U = S 𝑠 R
5 evlsvarval.k K = Base S
6 evlsvarval.b B = Base P
7 evlsvarval.i φ I W
8 evlsvarval.s φ S CRing
9 evlsvarval.r φ R SubRing S
10 evlsvarval.x φ X I
11 evlsvarval.a φ A K I
12 4 subrgring R SubRing S U Ring
13 9 12 syl φ U Ring
14 2 3 6 7 13 10 mvrcl φ V X B
15 fveq1 g = A g X = A X
16 1 3 4 5 7 8 9 10 evlsvar φ Q V X = g K I g X
17 fvexd φ A X V
18 15 16 11 17 fvmptd4 φ Q V X A = A X
19 14 18 jca φ V X B Q V X A = A X