Metamath Proof Explorer


Theorem evlsbagval

Description: Polynomial evaluation builder for a bag of variables. EDITORIAL: This theorem should stay in my mathbox until there's another use, since .0. and .1. using U instead of S is convenient for its sole use case mhphf , but may not be convenient for other uses. (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses evlsbagval.q Q = I evalSub S R
evlsbagval.p P = I mPoly U
evlsbagval.u U = S 𝑠 R
evlsbagval.w W = Base P
evlsbagval.k K = Base S
evlsbagval.m M = mulGrp S
evlsbagval.e × ˙ = M
evlsbagval.z 0 ˙ = 0 U
evlsbagval.o 1 ˙ = 1 U
evlsbagval.d D = h 0 I | h -1 Fin
evlsbagval.f F = s D if s = B 1 ˙ 0 ˙
evlsbagval.i φ I V
evlsbagval.s φ S CRing
evlsbagval.r φ R SubRing S
evlsbagval.a φ A K I
evlsbagval.b φ B D
Assertion evlsbagval φ F W Q F A = M v I B v × ˙ A v

Proof

Step Hyp Ref Expression
1 evlsbagval.q Q = I evalSub S R
2 evlsbagval.p P = I mPoly U
3 evlsbagval.u U = S 𝑠 R
4 evlsbagval.w W = Base P
5 evlsbagval.k K = Base S
6 evlsbagval.m M = mulGrp S
7 evlsbagval.e × ˙ = M
8 evlsbagval.z 0 ˙ = 0 U
9 evlsbagval.o 1 ˙ = 1 U
10 evlsbagval.d D = h 0 I | h -1 Fin
11 evlsbagval.f F = s D if s = B 1 ˙ 0 ˙
12 evlsbagval.i φ I V
13 evlsbagval.s φ S CRing
14 evlsbagval.r φ R SubRing S
15 evlsbagval.a φ A K I
16 evlsbagval.b φ B D
17 fvexd φ Base U V
18 ovexd φ 0 I V
19 10 18 rabexd φ D V
20 3 subrgring R SubRing S U Ring
21 14 20 syl φ U Ring
22 eqid Base U = Base U
23 22 9 ringidcl U Ring 1 ˙ Base U
24 21 23 syl φ 1 ˙ Base U
25 22 8 ring0cl U Ring 0 ˙ Base U
26 21 25 syl φ 0 ˙ Base U
27 24 26 ifcld φ if s = B 1 ˙ 0 ˙ Base U
28 27 adantr φ s D if s = B 1 ˙ 0 ˙ Base U
29 28 11 fmptd φ F : D Base U
30 17 19 29 elmapdd φ F Base U D
31 eqid I mPwSer U = I mPwSer U
32 eqid Base I mPwSer U = Base I mPwSer U
33 31 22 10 32 12 psrbas φ Base I mPwSer U = Base U D
34 30 33 eleqtrrd φ F Base I mPwSer U
35 19 26 11 sniffsupp φ finSupp 0 ˙ F
36 2 31 32 8 4 mplelbas F W F Base I mPwSer U finSupp 0 ˙ F
37 34 35 36 sylanbrc φ F W
38 fveq1 p = F p b = F b
39 38 fveq2d p = F x R K I × x p b = x R K I × x F b
40 39 oveq1d p = F x R K I × x p b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
41 40 mpteq2dv p = F b D x R K I × x p b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
42 41 oveq2d p = F S 𝑠 K I b D x R K I × x p b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
43 eqid S 𝑠 K I = S 𝑠 K I
44 eqid mulGrp S 𝑠 K I = mulGrp S 𝑠 K I
45 eqid mulGrp S 𝑠 K I = mulGrp S 𝑠 K I
46 eqid S 𝑠 K I = S 𝑠 K I
47 eqid p W S 𝑠 K I b D x R K I × x p b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = p W S 𝑠 K I b D x R K I × x p b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
48 eqid x R K I × x = x R K I × x
49 eqid x I a K I a x = x I a K I a x
50 1 2 4 10 5 3 43 44 45 46 47 48 49 12 13 14 evlsval3 φ Q = p W S 𝑠 K I b D x R K I × x p b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
51 ovexd φ S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x V
52 42 50 37 51 fvmptd4 φ Q F = S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
53 52 fveq1d φ Q F A = S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x A
54 eqid Base S 𝑠 K I = Base S 𝑠 K I
55 eqid 0 S 𝑠 K I = 0 S 𝑠 K I
56 13 crngringd φ S Ring
57 ovexd φ K I V
58 43 pwsring S Ring K I V S 𝑠 K I Ring
59 56 57 58 syl2anc φ S 𝑠 K I Ring
60 59 ringcmnd φ S 𝑠 K I CMnd
61 59 adantr φ b D S 𝑠 K I Ring
62 13 ad2antrr φ b D x R S CRing
63 ovexd φ b D x R K I V
64 5 subrgss R SubRing S R K
65 14 64 syl φ R K
66 65 adantr φ b D R K
67 66 sselda φ b D x R x K
68 fconst6g x K K I × x : K I K
69 67 68 syl φ b D x R K I × x : K I K
70 43 5 54 62 63 69 pwselbasr φ b D x R K I × x Base S 𝑠 K I
71 70 fmpttd φ b D x R K I × x : R Base S 𝑠 K I
72 eqid 1 S = 1 S
73 3 72 subrg1 R SubRing S 1 S = 1 U
74 14 73 syl φ 1 S = 1 U
75 72 subrg1cl R SubRing S 1 S R
76 14 75 syl φ 1 S R
77 74 76 eqeltrrd φ 1 U R
78 9 77 eqeltrid φ 1 ˙ R
79 3 subrgbas R SubRing S R = Base U
80 14 79 syl φ R = Base U
81 26 80 eleqtrrd φ 0 ˙ R
82 78 81 ifcld φ if s = B 1 ˙ 0 ˙ R
83 82 adantr φ s D if s = B 1 ˙ 0 ˙ R
84 83 11 fmptd φ F : D R
85 84 ffvelrnda φ b D F b R
86 71 85 ffvelrnd φ b D x R K I × x F b Base S 𝑠 K I
87 44 54 mgpbas Base S 𝑠 K I = Base mulGrp S 𝑠 K I
88 43 pwscrng S CRing K I V S 𝑠 K I CRing
89 13 57 88 syl2anc φ S 𝑠 K I CRing
90 44 crngmgp S 𝑠 K I CRing mulGrp S 𝑠 K I CMnd
91 89 90 syl φ mulGrp S 𝑠 K I CMnd
92 91 adantr φ b D mulGrp S 𝑠 K I CMnd
93 simpr φ b D b D
94 13 ad2antrr φ b D x I S CRing
95 ovexd φ b D x I K I V
96 elmapi a K I a : I K
97 96 adantl φ b D x I a K I a : I K
98 simplr φ b D x I a K I x I
99 97 98 ffvelrnd φ b D x I a K I a x K
100 99 fmpttd φ b D x I a K I a x : K I K
101 43 5 54 94 95 100 pwselbasr φ b D x I a K I a x Base S 𝑠 K I
102 101 fmpttd φ b D x I a K I a x : I Base S 𝑠 K I
103 10 87 45 92 93 102 psrbagev2 φ b D mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I
104 54 46 61 86 103 ringcld φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I
105 104 fmpttd φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x : D Base S 𝑠 K I
106 eqeq1 s = b s = B b = B
107 106 ifbid s = b if s = B 1 ˙ 0 ˙ = if b = B 1 ˙ 0 ˙
108 eldifi b D B b D
109 108 adantl φ b D B b D
110 9 fvexi 1 ˙ V
111 8 fvexi 0 ˙ V
112 110 111 ifex if b = B 1 ˙ 0 ˙ V
113 112 a1i φ b D B if b = B 1 ˙ 0 ˙ V
114 11 107 109 113 fvmptd3 φ b D B F b = if b = B 1 ˙ 0 ˙
115 eldifsnneq b D B ¬ b = B
116 115 adantl φ b D B ¬ b = B
117 116 iffalsed φ b D B if b = B 1 ˙ 0 ˙ = 0 ˙
118 114 117 eqtrd φ b D B F b = 0 ˙
119 118 fveq2d φ b D B x R K I × x F b = x R K I × x 0 ˙
120 sneq x = 0 ˙ x = 0 ˙
121 120 xpeq2d x = 0 ˙ K I × x = K I × 0 ˙
122 81 adantr φ b D B 0 ˙ R
123 ovex K I V
124 snex 0 ˙ V
125 123 124 xpex K I × 0 ˙ V
126 125 a1i φ b D B K I × 0 ˙ V
127 48 121 122 126 fvmptd3 φ b D B x R K I × x 0 ˙ = K I × 0 ˙
128 eqid 0 S = 0 S
129 3 128 subrg0 R SubRing S 0 S = 0 U
130 14 129 syl φ 0 S = 0 U
131 130 8 eqtr4di φ 0 S = 0 ˙
132 131 sneqd φ 0 S = 0 ˙
133 132 xpeq2d φ K I × 0 S = K I × 0 ˙
134 56 ringgrpd φ S Grp
135 134 grpmndd φ S Mnd
136 43 128 pws0g S Mnd K I V K I × 0 S = 0 S 𝑠 K I
137 135 57 136 syl2anc φ K I × 0 S = 0 S 𝑠 K I
138 133 137 eqtr3d φ K I × 0 ˙ = 0 S 𝑠 K I
139 138 adantr φ b D B K I × 0 ˙ = 0 S 𝑠 K I
140 119 127 139 3eqtrd φ b D B x R K I × x F b = 0 S 𝑠 K I
141 140 oveq1d φ b D B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = 0 S 𝑠 K I S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
142 91 adantr φ b D B mulGrp S 𝑠 K I CMnd
143 13 ad2antrr φ b D B x I S CRing
144 ovexd φ b D B x I K I V
145 96 adantl φ b D B x I a K I a : I K
146 simplr φ b D B x I a K I x I
147 145 146 ffvelrnd φ b D B x I a K I a x K
148 147 fmpttd φ b D B x I a K I a x : K I K
149 43 5 54 143 144 148 pwselbasr φ b D B x I a K I a x Base S 𝑠 K I
150 149 fmpttd φ b D B x I a K I a x : I Base S 𝑠 K I
151 10 87 45 142 109 150 psrbagev2 φ b D B mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I
152 54 46 55 ringlz S 𝑠 K I Ring mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I 0 S 𝑠 K I S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = 0 S 𝑠 K I
153 59 151 152 syl2an2r φ b D B 0 S 𝑠 K I S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = 0 S 𝑠 K I
154 141 153 eqtrd φ b D B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = 0 S 𝑠 K I
155 154 19 suppss2 φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x supp 0 S 𝑠 K I B
156 19 mptexd φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x V
157 fvexd φ 0 S 𝑠 K I V
158 funmpt Fun b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
159 158 a1i φ Fun b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
160 snfi B Fin
161 160 a1i φ B Fin
162 161 155 ssfid φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x supp 0 S 𝑠 K I Fin
163 156 157 159 162 isfsuppd φ finSupp 0 S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
164 54 55 60 19 105 155 163 gsumres φ S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x B = S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
165 16 snssd φ B D
166 165 resmptd φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x B = b B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
167 166 oveq2d φ S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x B = S 𝑠 K I b B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
168 164 167 eqtr3d φ S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = S 𝑠 K I b B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
169 168 fveq1d φ S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x A = S 𝑠 K I b B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x A
170 fveq1 g = A g v = A v
171 170 oveq2d g = A B v × ˙ g v = B v × ˙ A v
172 171 mpteq2dv g = A v I B v × ˙ g v = v I B v × ˙ A v
173 172 oveq2d g = A M v I B v × ˙ g v = M v I B v × ˙ A v
174 59 ringgrpd φ S 𝑠 K I Grp
175 174 grpmndd φ S 𝑠 K I Mnd
176 iftrue s = B if s = B 1 ˙ 0 ˙ = 1 ˙
177 110 a1i φ 1 ˙ V
178 11 176 16 177 fvmptd3 φ F B = 1 ˙
179 178 fveq2d φ x R K I × x F B = x R K I × x 1 ˙
180 9 74 eqtr4id φ 1 ˙ = 1 S
181 180 fveq2d φ x R K I × x 1 ˙ = x R K I × x 1 S
182 sneq x = 1 S x = 1 S
183 182 xpeq2d x = 1 S K I × x = K I × 1 S
184 snex 1 S V
185 184 a1i φ 1 S V
186 57 185 xpexd φ K I × 1 S V
187 48 183 76 186 fvmptd3 φ x R K I × x 1 S = K I × 1 S
188 181 187 eqtrd φ x R K I × x 1 ˙ = K I × 1 S
189 43 72 pws1 S Ring K I V K I × 1 S = 1 S 𝑠 K I
190 56 57 189 syl2anc φ K I × 1 S = 1 S 𝑠 K I
191 179 188 190 3eqtrd φ x R K I × x F B = 1 S 𝑠 K I
192 191 oveq1d φ x R K I × x F B S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x = 1 S 𝑠 K I S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
193 13 adantr φ x I S CRing
194 ovexd φ x I K I V
195 96 adantl φ x I a K I a : I K
196 simplr φ x I a K I x I
197 195 196 ffvelrnd φ x I a K I a x K
198 197 fmpttd φ x I a K I a x : K I K
199 43 5 54 193 194 198 pwselbasr φ x I a K I a x Base S 𝑠 K I
200 199 fmpttd φ x I a K I a x : I Base S 𝑠 K I
201 10 87 45 91 16 200 psrbagev2 φ mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I
202 eqid 1 S 𝑠 K I = 1 S 𝑠 K I
203 54 46 202 ringlidm S 𝑠 K I Ring mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I 1 S 𝑠 K I S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x = mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
204 59 201 203 syl2anc φ 1 S 𝑠 K I S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x = mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
205 192 204 eqtrd φ x R K I × x F B S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x = mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
206 205 201 eqeltrd φ x R K I × x F B S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I
207 2fveq3 b = B x R K I × x F b = x R K I × x F B
208 oveq1 b = B b mulGrp S 𝑠 K I f x I a K I a x = B mulGrp S 𝑠 K I f x I a K I a x
209 208 oveq2d b = B mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
210 207 209 oveq12d b = B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = x R K I × x F B S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
211 54 210 gsumsn S 𝑠 K I Mnd B D x R K I × x F B S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I S 𝑠 K I b B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = x R K I × x F B S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
212 175 16 206 211 syl3anc φ S 𝑠 K I b B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = x R K I × x F B S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
213 10 psrbagf B D B : I 0
214 16 213 syl φ B : I 0
215 214 ffnd φ B Fn I
216 123 mptex a K I a x V
217 216 49 fnmpti x I a K I a x Fn I
218 217 a1i φ x I a K I a x Fn I
219 inidm I I = I
220 eqidd φ v I B v = B v
221 fveq2 x = v a x = a v
222 221 mpteq2dv x = v a K I a x = a K I a v
223 simpr φ v I v I
224 123 mptex a K I a v V
225 224 a1i φ v I a K I a v V
226 49 222 223 225 fvmptd3 φ v I x I a K I a x v = a K I a v
227 215 218 12 12 219 220 226 offval φ B mulGrp S 𝑠 K I f x I a K I a x = v I B v mulGrp S 𝑠 K I a K I a v
228 13 adantr φ v I S CRing
229 ovexd φ v I K I V
230 44 ringmgp S 𝑠 K I Ring mulGrp S 𝑠 K I Mnd
231 59 230 syl φ mulGrp S 𝑠 K I Mnd
232 231 adantr φ v I mulGrp S 𝑠 K I Mnd
233 214 ffvelrnda φ v I B v 0
234 96 adantl φ v I a K I a : I K
235 simplr φ v I a K I v I
236 234 235 ffvelrnd φ v I a K I a v K
237 236 fmpttd φ v I a K I a v : K I K
238 43 5 54 228 229 237 pwselbasr φ v I a K I a v Base S 𝑠 K I
239 87 45 mulgnn0cl mulGrp S 𝑠 K I Mnd B v 0 a K I a v Base S 𝑠 K I B v mulGrp S 𝑠 K I a K I a v Base S 𝑠 K I
240 232 233 238 239 syl3anc φ v I B v mulGrp S 𝑠 K I a K I a v Base S 𝑠 K I
241 43 5 54 228 229 240 pwselbas φ v I B v mulGrp S 𝑠 K I a K I a v : K I K
242 241 ffnd φ v I B v mulGrp S 𝑠 K I a K I a v Fn K I
243 ovex B v × ˙ g v V
244 eqid g K I B v × ˙ g v = g K I B v × ˙ g v
245 243 244 fnmpti g K I B v × ˙ g v Fn K I
246 245 a1i φ v I g K I B v × ˙ g v Fn K I
247 eqid a K I a v = a K I a v
248 fveq1 a = l a v = l v
249 simpr φ v I l K I l K I
250 fvexd φ v I l K I l v V
251 247 248 249 250 fvmptd3 φ v I l K I a K I a v l = l v
252 251 oveq2d φ v I l K I B v × ˙ a K I a v l = B v × ˙ l v
253 56 ad2antrr φ v I l K I S Ring
254 ovexd φ v I l K I K I V
255 233 adantr φ v I l K I B v 0
256 238 adantr φ v I l K I a K I a v Base S 𝑠 K I
257 43 54 44 6 45 7 253 254 255 256 249 pwsexpg φ v I l K I B v mulGrp S 𝑠 K I a K I a v l = B v × ˙ a K I a v l
258 fveq1 g = l g v = l v
259 258 oveq2d g = l B v × ˙ g v = B v × ˙ l v
260 ovexd φ v I l K I B v × ˙ l v V
261 244 259 249 260 fvmptd3 φ v I l K I g K I B v × ˙ g v l = B v × ˙ l v
262 252 257 261 3eqtr4d φ v I l K I B v mulGrp S 𝑠 K I a K I a v l = g K I B v × ˙ g v l
263 242 246 262 eqfnfvd φ v I B v mulGrp S 𝑠 K I a K I a v = g K I B v × ˙ g v
264 263 mpteq2dva φ v I B v mulGrp S 𝑠 K I a K I a v = v I g K I B v × ˙ g v
265 227 264 eqtrd φ B mulGrp S 𝑠 K I f x I a K I a x = v I g K I B v × ˙ g v
266 265 oveq2d φ mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x = mulGrp S 𝑠 K I v I g K I B v × ˙ g v
267 6 crngmgp S CRing M CMnd
268 13 267 syl φ M CMnd
269 268 cmnmndd φ M Mnd
270 269 adantr φ g K I v I M Mnd
271 233 adantrl φ g K I v I B v 0
272 elmapi g K I g : I K
273 272 ad2antrl φ g K I v I g : I K
274 simprr φ g K I v I v I
275 273 274 ffvelrnd φ g K I v I g v K
276 6 5 mgpbas K = Base M
277 276 7 mulgnn0cl M Mnd B v 0 g v K B v × ˙ g v K
278 270 271 275 277 syl3anc φ g K I v I B v × ˙ g v K
279 12 mptexd φ v I g K I B v × ˙ g v V
280 fvexd φ 1 S 𝑠 K I V
281 funmpt Fun v I g K I B v × ˙ g v
282 281 a1i φ Fun v I g K I B v × ˙ g v
283 10 psrbagfsupp B D finSupp 0 B
284 16 283 syl φ finSupp 0 B
285 284 fsuppimpd φ B supp 0 Fin
286 ssidd φ B supp 0 B supp 0
287 c0ex 0 V
288 287 a1i φ 0 V
289 214 286 12 288 suppssr φ v I supp 0 B B v = 0
290 289 oveq1d φ v I supp 0 B B v × ˙ g v = 0 × ˙ g v
291 290 adantr φ v I supp 0 B g K I B v × ˙ g v = 0 × ˙ g v
292 272 adantl φ v I supp 0 B g K I g : I K
293 eldifi v I supp 0 B v I
294 293 ad2antlr φ v I supp 0 B g K I v I
295 292 294 ffvelrnd φ v I supp 0 B g K I g v K
296 6 72 ringidval 1 S = 0 M
297 276 296 7 mulg0 g v K 0 × ˙ g v = 1 S
298 295 297 syl φ v I supp 0 B g K I 0 × ˙ g v = 1 S
299 291 298 eqtrd φ v I supp 0 B g K I B v × ˙ g v = 1 S
300 299 mpteq2dva φ v I supp 0 B g K I B v × ˙ g v = g K I 1 S
301 fconstmpt K I × 1 S = g K I 1 S
302 ovexd φ v I supp 0 B K I V
303 56 302 189 syl2an2r φ v I supp 0 B K I × 1 S = 1 S 𝑠 K I
304 301 303 eqtr3id φ v I supp 0 B g K I 1 S = 1 S 𝑠 K I
305 300 304 eqtrd φ v I supp 0 B g K I B v × ˙ g v = 1 S 𝑠 K I
306 305 12 suppss2 φ v I g K I B v × ˙ g v supp 1 S 𝑠 K I B supp 0
307 285 306 ssfid φ v I g K I B v × ˙ g v supp 1 S 𝑠 K I Fin
308 279 280 282 307 isfsuppd φ finSupp 1 S 𝑠 K I v I g K I B v × ˙ g v
309 43 5 202 44 6 57 12 13 278 308 pwsgprod φ mulGrp S 𝑠 K I v I g K I B v × ˙ g v = g K I M v I B v × ˙ g v
310 204 266 309 3eqtrd φ 1 S 𝑠 K I S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x = g K I M v I B v × ˙ g v
311 212 192 310 3eqtrd φ S 𝑠 K I b B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = g K I M v I B v × ˙ g v
312 ovexd φ M v I B v × ˙ A v V
313 173 311 15 312 fvmptd4 φ S 𝑠 K I b B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x A = M v I B v × ˙ A v
314 53 169 313 3eqtrd φ Q F A = M v I B v × ˙ A v
315 37 314 jca φ F W Q F A = M v I B v × ˙ A v