Metamath Proof Explorer


Theorem evlsbagval

Description: Polynomial evaluation builder for a bag of variables. EDITORIAL: This theorem should stay in my mathbox until there's another use, since .0. and .1. using U instead of S is convenient for its sole use case mhphf , but may not be convenient for other uses. (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses evlsbagval.q Q = I evalSub S R
evlsbagval.p P = I mPoly U
evlsbagval.u U = S 𝑠 R
evlsbagval.w W = Base P
evlsbagval.k K = Base S
evlsbagval.m M = mulGrp S
evlsbagval.e × ˙ = M
evlsbagval.z 0 ˙ = 0 U
evlsbagval.o 1 ˙ = 1 U
evlsbagval.d D = h 0 I | h -1 Fin
evlsbagval.f F = s D if s = B 1 ˙ 0 ˙
evlsbagval.i φ I V
evlsbagval.s φ S CRing
evlsbagval.r φ R SubRing S
evlsbagval.a φ A K I
evlsbagval.b φ B D
Assertion evlsbagval φ F W Q F A = M v I B v × ˙ A v

Proof

Step Hyp Ref Expression
1 evlsbagval.q Q = I evalSub S R
2 evlsbagval.p P = I mPoly U
3 evlsbagval.u U = S 𝑠 R
4 evlsbagval.w W = Base P
5 evlsbagval.k K = Base S
6 evlsbagval.m M = mulGrp S
7 evlsbagval.e × ˙ = M
8 evlsbagval.z 0 ˙ = 0 U
9 evlsbagval.o 1 ˙ = 1 U
10 evlsbagval.d D = h 0 I | h -1 Fin
11 evlsbagval.f F = s D if s = B 1 ˙ 0 ˙
12 evlsbagval.i φ I V
13 evlsbagval.s φ S CRing
14 evlsbagval.r φ R SubRing S
15 evlsbagval.a φ A K I
16 evlsbagval.b φ B D
17 fvexd φ Base U V
18 ovexd φ 0 I V
19 10 18 rabexd φ D V
20 3 subrgring R SubRing S U Ring
21 14 20 syl φ U Ring
22 eqid Base U = Base U
23 22 9 ringidcl U Ring 1 ˙ Base U
24 21 23 syl φ 1 ˙ Base U
25 22 8 ring0cl U Ring 0 ˙ Base U
26 21 25 syl φ 0 ˙ Base U
27 24 26 ifcld φ if s = B 1 ˙ 0 ˙ Base U
28 27 adantr φ s D if s = B 1 ˙ 0 ˙ Base U
29 28 11 fmptd φ F : D Base U
30 17 19 29 elmapdd φ F Base U D
31 eqid I mPwSer U = I mPwSer U
32 eqid Base I mPwSer U = Base I mPwSer U
33 31 22 10 32 12 psrbas φ Base I mPwSer U = Base U D
34 30 33 eleqtrrd φ F Base I mPwSer U
35 19 26 11 sniffsupp φ finSupp 0 ˙ F
36 2 31 32 8 4 mplelbas F W F Base I mPwSer U finSupp 0 ˙ F
37 34 35 36 sylanbrc φ F W
38 fveq1 g = A g v = A v
39 38 oveq2d g = A B v × ˙ g v = B v × ˙ A v
40 39 mpteq2dv g = A v I B v × ˙ g v = v I B v × ˙ A v
41 40 oveq2d g = A M v I B v × ˙ g v = M v I B v × ˙ A v
42 fveq1 p = F p b = F b
43 42 fveq2d p = F x R K I × x p b = x R K I × x F b
44 43 oveq1d p = F x R K I × x p b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
45 44 mpteq2dv p = F b D x R K I × x p b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
46 45 oveq2d p = F S 𝑠 K I b D x R K I × x p b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
47 eqid S 𝑠 K I = S 𝑠 K I
48 eqid mulGrp S 𝑠 K I = mulGrp S 𝑠 K I
49 eqid mulGrp S 𝑠 K I = mulGrp S 𝑠 K I
50 eqid S 𝑠 K I = S 𝑠 K I
51 eqid p W S 𝑠 K I b D x R K I × x p b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = p W S 𝑠 K I b D x R K I × x p b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
52 eqid x R K I × x = x R K I × x
53 eqid x I a K I a x = x I a K I a x
54 1 2 4 10 5 3 47 48 49 50 51 52 53 12 13 14 evlsval3 φ Q = p W S 𝑠 K I b D x R K I × x p b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
55 ovexd φ S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x V
56 46 54 37 55 fvmptd4 φ Q F = S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
57 eqid Base S 𝑠 K I = Base S 𝑠 K I
58 eqid 0 S 𝑠 K I = 0 S 𝑠 K I
59 13 crngringd φ S Ring
60 ovexd φ K I V
61 47 pwsring S Ring K I V S 𝑠 K I Ring
62 59 60 61 syl2anc φ S 𝑠 K I Ring
63 62 ringcmnd φ S 𝑠 K I CMnd
64 62 adantr φ b D S 𝑠 K I Ring
65 13 ad2antrr φ b D x R S CRing
66 ovexd φ b D x R K I V
67 5 subrgss R SubRing S R K
68 14 67 syl φ R K
69 68 adantr φ b D R K
70 69 sselda φ b D x R x K
71 fconst6g x K K I × x : K I K
72 70 71 syl φ b D x R K I × x : K I K
73 47 5 57 65 66 72 pwselbasr φ b D x R K I × x Base S 𝑠 K I
74 73 fmpttd φ b D x R K I × x : R Base S 𝑠 K I
75 eqid 1 S = 1 S
76 3 75 subrg1 R SubRing S 1 S = 1 U
77 14 76 syl φ 1 S = 1 U
78 75 subrg1cl R SubRing S 1 S R
79 14 78 syl φ 1 S R
80 77 79 eqeltrrd φ 1 U R
81 9 80 eqeltrid φ 1 ˙ R
82 3 subrgbas R SubRing S R = Base U
83 14 82 syl φ R = Base U
84 26 83 eleqtrrd φ 0 ˙ R
85 81 84 ifcld φ if s = B 1 ˙ 0 ˙ R
86 85 adantr φ s D if s = B 1 ˙ 0 ˙ R
87 86 11 fmptd φ F : D R
88 87 ffvelrnda φ b D F b R
89 74 88 ffvelrnd φ b D x R K I × x F b Base S 𝑠 K I
90 48 57 mgpbas Base S 𝑠 K I = Base mulGrp S 𝑠 K I
91 47 pwscrng S CRing K I V S 𝑠 K I CRing
92 13 60 91 syl2anc φ S 𝑠 K I CRing
93 48 crngmgp S 𝑠 K I CRing mulGrp S 𝑠 K I CMnd
94 92 93 syl φ mulGrp S 𝑠 K I CMnd
95 94 adantr φ b D mulGrp S 𝑠 K I CMnd
96 simpr φ b D b D
97 13 ad2antrr φ b D x I S CRing
98 ovexd φ b D x I K I V
99 elmapi a K I a : I K
100 99 adantl φ b D x I a K I a : I K
101 simplr φ b D x I a K I x I
102 100 101 ffvelrnd φ b D x I a K I a x K
103 102 fmpttd φ b D x I a K I a x : K I K
104 47 5 57 97 98 103 pwselbasr φ b D x I a K I a x Base S 𝑠 K I
105 104 fmpttd φ b D x I a K I a x : I Base S 𝑠 K I
106 10 90 49 95 96 105 psrbagev2 φ b D mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I
107 57 50 64 89 106 ringcld φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I
108 107 fmpttd φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x : D Base S 𝑠 K I
109 eqeq1 s = b s = B b = B
110 109 ifbid s = b if s = B 1 ˙ 0 ˙ = if b = B 1 ˙ 0 ˙
111 eldifi b D B b D
112 111 adantl φ b D B b D
113 9 fvexi 1 ˙ V
114 8 fvexi 0 ˙ V
115 113 114 ifex if b = B 1 ˙ 0 ˙ V
116 115 a1i φ b D B if b = B 1 ˙ 0 ˙ V
117 11 110 112 116 fvmptd3 φ b D B F b = if b = B 1 ˙ 0 ˙
118 eldifsnneq b D B ¬ b = B
119 118 adantl φ b D B ¬ b = B
120 119 iffalsed φ b D B if b = B 1 ˙ 0 ˙ = 0 ˙
121 117 120 eqtrd φ b D B F b = 0 ˙
122 121 fveq2d φ b D B x R K I × x F b = x R K I × x 0 ˙
123 sneq x = 0 ˙ x = 0 ˙
124 123 xpeq2d x = 0 ˙ K I × x = K I × 0 ˙
125 84 adantr φ b D B 0 ˙ R
126 ovex K I V
127 snex 0 ˙ V
128 126 127 xpex K I × 0 ˙ V
129 128 a1i φ b D B K I × 0 ˙ V
130 52 124 125 129 fvmptd3 φ b D B x R K I × x 0 ˙ = K I × 0 ˙
131 eqid 0 S = 0 S
132 3 131 subrg0 R SubRing S 0 S = 0 U
133 14 132 syl φ 0 S = 0 U
134 133 8 eqtr4di φ 0 S = 0 ˙
135 134 sneqd φ 0 S = 0 ˙
136 135 xpeq2d φ K I × 0 S = K I × 0 ˙
137 59 ringgrpd φ S Grp
138 137 grpmndd φ S Mnd
139 47 131 pws0g S Mnd K I V K I × 0 S = 0 S 𝑠 K I
140 138 60 139 syl2anc φ K I × 0 S = 0 S 𝑠 K I
141 136 140 eqtr3d φ K I × 0 ˙ = 0 S 𝑠 K I
142 141 adantr φ b D B K I × 0 ˙ = 0 S 𝑠 K I
143 122 130 142 3eqtrd φ b D B x R K I × x F b = 0 S 𝑠 K I
144 143 oveq1d φ b D B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = 0 S 𝑠 K I S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
145 94 adantr φ b D B mulGrp S 𝑠 K I CMnd
146 13 ad2antrr φ b D B x I S CRing
147 ovexd φ b D B x I K I V
148 99 adantl φ b D B x I a K I a : I K
149 simplr φ b D B x I a K I x I
150 148 149 ffvelrnd φ b D B x I a K I a x K
151 150 fmpttd φ b D B x I a K I a x : K I K
152 47 5 57 146 147 151 pwselbasr φ b D B x I a K I a x Base S 𝑠 K I
153 152 fmpttd φ b D B x I a K I a x : I Base S 𝑠 K I
154 10 90 49 145 112 153 psrbagev2 φ b D B mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I
155 57 50 58 ringlz S 𝑠 K I Ring mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I 0 S 𝑠 K I S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = 0 S 𝑠 K I
156 62 154 155 syl2an2r φ b D B 0 S 𝑠 K I S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = 0 S 𝑠 K I
157 144 156 eqtrd φ b D B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = 0 S 𝑠 K I
158 157 19 suppss2 φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x supp 0 S 𝑠 K I B
159 19 mptexd φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x V
160 fvexd φ 0 S 𝑠 K I V
161 funmpt Fun b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
162 161 a1i φ Fun b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
163 snfi B Fin
164 163 a1i φ B Fin
165 164 158 ssfid φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x supp 0 S 𝑠 K I Fin
166 159 160 162 165 isfsuppd φ finSupp 0 S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
167 57 58 63 19 108 158 166 gsumres φ S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x B = S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
168 16 snssd φ B D
169 168 resmptd φ b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x B = b B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
170 169 oveq2d φ S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x B = S 𝑠 K I b B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
171 167 170 eqtr3d φ S 𝑠 K I b D x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = S 𝑠 K I b B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x
172 62 ringgrpd φ S 𝑠 K I Grp
173 172 grpmndd φ S 𝑠 K I Mnd
174 iftrue s = B if s = B 1 ˙ 0 ˙ = 1 ˙
175 113 a1i φ 1 ˙ V
176 11 174 16 175 fvmptd3 φ F B = 1 ˙
177 176 fveq2d φ x R K I × x F B = x R K I × x 1 ˙
178 9 77 eqtr4id φ 1 ˙ = 1 S
179 178 fveq2d φ x R K I × x 1 ˙ = x R K I × x 1 S
180 sneq x = 1 S x = 1 S
181 180 xpeq2d x = 1 S K I × x = K I × 1 S
182 snex 1 S V
183 182 a1i φ 1 S V
184 60 183 xpexd φ K I × 1 S V
185 52 181 79 184 fvmptd3 φ x R K I × x 1 S = K I × 1 S
186 179 185 eqtrd φ x R K I × x 1 ˙ = K I × 1 S
187 47 75 pws1 S Ring K I V K I × 1 S = 1 S 𝑠 K I
188 59 60 187 syl2anc φ K I × 1 S = 1 S 𝑠 K I
189 177 186 188 3eqtrd φ x R K I × x F B = 1 S 𝑠 K I
190 189 oveq1d φ x R K I × x F B S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x = 1 S 𝑠 K I S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
191 eqid 1 S 𝑠 K I = 1 S 𝑠 K I
192 13 adantr φ x I S CRing
193 ovexd φ x I K I V
194 99 adantl φ x I a K I a : I K
195 simplr φ x I a K I x I
196 194 195 ffvelrnd φ x I a K I a x K
197 196 fmpttd φ x I a K I a x : K I K
198 47 5 57 192 193 197 pwselbasr φ x I a K I a x Base S 𝑠 K I
199 198 fmpttd φ x I a K I a x : I Base S 𝑠 K I
200 10 90 49 94 16 199 psrbagev2 φ mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I
201 57 50 191 62 200 ringlidmd φ 1 S 𝑠 K I S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x = mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
202 190 201 eqtrd φ x R K I × x F B S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x = mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
203 202 200 eqeltrd φ x R K I × x F B S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I
204 2fveq3 b = B x R K I × x F b = x R K I × x F B
205 oveq1 b = B b mulGrp S 𝑠 K I f x I a K I a x = B mulGrp S 𝑠 K I f x I a K I a x
206 205 oveq2d b = B mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
207 204 206 oveq12d b = B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = x R K I × x F B S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
208 57 207 gsumsn S 𝑠 K I Mnd B D x R K I × x F B S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x Base S 𝑠 K I S 𝑠 K I b B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = x R K I × x F B S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
209 173 16 203 208 syl3anc φ S 𝑠 K I b B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = x R K I × x F B S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x
210 10 psrbagf B D B : I 0
211 16 210 syl φ B : I 0
212 211 ffnd φ B Fn I
213 126 mptex a K I a x V
214 213 53 fnmpti x I a K I a x Fn I
215 214 a1i φ x I a K I a x Fn I
216 inidm I I = I
217 eqidd φ v I B v = B v
218 fveq2 x = v a x = a v
219 218 mpteq2dv x = v a K I a x = a K I a v
220 simpr φ v I v I
221 126 mptex a K I a v V
222 221 a1i φ v I a K I a v V
223 53 219 220 222 fvmptd3 φ v I x I a K I a x v = a K I a v
224 212 215 12 12 216 217 223 offval φ B mulGrp S 𝑠 K I f x I a K I a x = v I B v mulGrp S 𝑠 K I a K I a v
225 13 adantr φ v I S CRing
226 ovexd φ v I K I V
227 48 ringmgp S 𝑠 K I Ring mulGrp S 𝑠 K I Mnd
228 62 227 syl φ mulGrp S 𝑠 K I Mnd
229 228 adantr φ v I mulGrp S 𝑠 K I Mnd
230 211 ffvelrnda φ v I B v 0
231 99 adantl φ v I a K I a : I K
232 simplr φ v I a K I v I
233 231 232 ffvelrnd φ v I a K I a v K
234 233 fmpttd φ v I a K I a v : K I K
235 47 5 57 225 226 234 pwselbasr φ v I a K I a v Base S 𝑠 K I
236 90 49 mulgnn0cl mulGrp S 𝑠 K I Mnd B v 0 a K I a v Base S 𝑠 K I B v mulGrp S 𝑠 K I a K I a v Base S 𝑠 K I
237 229 230 235 236 syl3anc φ v I B v mulGrp S 𝑠 K I a K I a v Base S 𝑠 K I
238 47 5 57 225 226 237 pwselbas φ v I B v mulGrp S 𝑠 K I a K I a v : K I K
239 238 ffnd φ v I B v mulGrp S 𝑠 K I a K I a v Fn K I
240 ovex B v × ˙ g v V
241 eqid g K I B v × ˙ g v = g K I B v × ˙ g v
242 240 241 fnmpti g K I B v × ˙ g v Fn K I
243 242 a1i φ v I g K I B v × ˙ g v Fn K I
244 eqid a K I a v = a K I a v
245 fveq1 a = l a v = l v
246 simpr φ v I l K I l K I
247 fvexd φ v I l K I l v V
248 244 245 246 247 fvmptd3 φ v I l K I a K I a v l = l v
249 248 oveq2d φ v I l K I B v × ˙ a K I a v l = B v × ˙ l v
250 59 ad2antrr φ v I l K I S Ring
251 ovexd φ v I l K I K I V
252 230 adantr φ v I l K I B v 0
253 235 adantr φ v I l K I a K I a v Base S 𝑠 K I
254 47 57 48 6 49 7 250 251 252 253 246 pwsexpg φ v I l K I B v mulGrp S 𝑠 K I a K I a v l = B v × ˙ a K I a v l
255 fveq1 g = l g v = l v
256 255 oveq2d g = l B v × ˙ g v = B v × ˙ l v
257 ovexd φ v I l K I B v × ˙ l v V
258 241 256 246 257 fvmptd3 φ v I l K I g K I B v × ˙ g v l = B v × ˙ l v
259 249 254 258 3eqtr4d φ v I l K I B v mulGrp S 𝑠 K I a K I a v l = g K I B v × ˙ g v l
260 239 243 259 eqfnfvd φ v I B v mulGrp S 𝑠 K I a K I a v = g K I B v × ˙ g v
261 260 mpteq2dva φ v I B v mulGrp S 𝑠 K I a K I a v = v I g K I B v × ˙ g v
262 224 261 eqtrd φ B mulGrp S 𝑠 K I f x I a K I a x = v I g K I B v × ˙ g v
263 262 oveq2d φ mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x = mulGrp S 𝑠 K I v I g K I B v × ˙ g v
264 6 crngmgp S CRing M CMnd
265 13 264 syl φ M CMnd
266 265 cmnmndd φ M Mnd
267 266 adantr φ g K I v I M Mnd
268 230 adantrl φ g K I v I B v 0
269 elmapi g K I g : I K
270 269 ad2antrl φ g K I v I g : I K
271 simprr φ g K I v I v I
272 270 271 ffvelrnd φ g K I v I g v K
273 6 5 mgpbas K = Base M
274 273 7 mulgnn0cl M Mnd B v 0 g v K B v × ˙ g v K
275 267 268 272 274 syl3anc φ g K I v I B v × ˙ g v K
276 12 mptexd φ v I g K I B v × ˙ g v V
277 fvexd φ 1 S 𝑠 K I V
278 funmpt Fun v I g K I B v × ˙ g v
279 278 a1i φ Fun v I g K I B v × ˙ g v
280 10 psrbagfsupp B D finSupp 0 B
281 16 280 syl φ finSupp 0 B
282 281 fsuppimpd φ B supp 0 Fin
283 ssidd φ B supp 0 B supp 0
284 c0ex 0 V
285 284 a1i φ 0 V
286 211 283 12 285 suppssr φ v I supp 0 B B v = 0
287 286 oveq1d φ v I supp 0 B B v × ˙ g v = 0 × ˙ g v
288 287 adantr φ v I supp 0 B g K I B v × ˙ g v = 0 × ˙ g v
289 269 adantl φ v I supp 0 B g K I g : I K
290 eldifi v I supp 0 B v I
291 290 ad2antlr φ v I supp 0 B g K I v I
292 289 291 ffvelrnd φ v I supp 0 B g K I g v K
293 6 75 ringidval 1 S = 0 M
294 273 293 7 mulg0 g v K 0 × ˙ g v = 1 S
295 292 294 syl φ v I supp 0 B g K I 0 × ˙ g v = 1 S
296 288 295 eqtrd φ v I supp 0 B g K I B v × ˙ g v = 1 S
297 296 mpteq2dva φ v I supp 0 B g K I B v × ˙ g v = g K I 1 S
298 fconstmpt K I × 1 S = g K I 1 S
299 ovexd φ v I supp 0 B K I V
300 59 299 187 syl2an2r φ v I supp 0 B K I × 1 S = 1 S 𝑠 K I
301 298 300 eqtr3id φ v I supp 0 B g K I 1 S = 1 S 𝑠 K I
302 297 301 eqtrd φ v I supp 0 B g K I B v × ˙ g v = 1 S 𝑠 K I
303 302 12 suppss2 φ v I g K I B v × ˙ g v supp 1 S 𝑠 K I B supp 0
304 282 303 ssfid φ v I g K I B v × ˙ g v supp 1 S 𝑠 K I Fin
305 276 277 279 304 isfsuppd φ finSupp 1 S 𝑠 K I v I g K I B v × ˙ g v
306 47 5 191 48 6 60 12 13 275 305 pwsgprod φ mulGrp S 𝑠 K I v I g K I B v × ˙ g v = g K I M v I B v × ˙ g v
307 201 263 306 3eqtrd φ 1 S 𝑠 K I S 𝑠 K I mulGrp S 𝑠 K I B mulGrp S 𝑠 K I f x I a K I a x = g K I M v I B v × ˙ g v
308 209 190 307 3eqtrd φ S 𝑠 K I b B x R K I × x F b S 𝑠 K I mulGrp S 𝑠 K I b mulGrp S 𝑠 K I f x I a K I a x = g K I M v I B v × ˙ g v
309 56 171 308 3eqtrd φ Q F = g K I M v I B v × ˙ g v
310 ovexd φ M v I B v × ˙ A v V
311 41 309 15 310 fvmptd4 φ Q F A = M v I B v × ˙ A v
312 37 311 jca φ F W Q F A = M v I B v × ˙ A v