Metamath Proof Explorer


Theorem evlsexpval

Description: Polynomial evaluation builder for exponentiation. (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses evlsaddval.q Q = I evalSub S R
evlsaddval.p P = I mPoly U
evlsaddval.u U = S 𝑠 R
evlsaddval.k K = Base S
evlsaddval.b B = Base P
evlsaddval.i φ I Z
evlsaddval.s φ S CRing
evlsaddval.r φ R SubRing S
evlsaddval.a φ A K I
evlsaddval.m φ M B Q M A = V
evlsexpval.g ˙ = mulGrp P
evlsexpval.f × ˙ = mulGrp S
evlsexpval.n φ N 0
Assertion evlsexpval φ N ˙ M B Q N ˙ M A = N × ˙ V

Proof

Step Hyp Ref Expression
1 evlsaddval.q Q = I evalSub S R
2 evlsaddval.p P = I mPoly U
3 evlsaddval.u U = S 𝑠 R
4 evlsaddval.k K = Base S
5 evlsaddval.b B = Base P
6 evlsaddval.i φ I Z
7 evlsaddval.s φ S CRing
8 evlsaddval.r φ R SubRing S
9 evlsaddval.a φ A K I
10 evlsaddval.m φ M B Q M A = V
11 evlsexpval.g ˙ = mulGrp P
12 evlsexpval.f × ˙ = mulGrp S
13 evlsexpval.n φ N 0
14 eqid S 𝑠 K I = S 𝑠 K I
15 1 2 3 14 4 evlsrhm I Z S CRing R SubRing S Q P RingHom S 𝑠 K I
16 6 7 8 15 syl3anc φ Q P RingHom S 𝑠 K I
17 rhmrcl1 Q P RingHom S 𝑠 K I P Ring
18 eqid mulGrp P = mulGrp P
19 18 ringmgp P Ring mulGrp P Mnd
20 16 17 19 3syl φ mulGrp P Mnd
21 10 simpld φ M B
22 18 5 mgpbas B = Base mulGrp P
23 22 11 mulgnn0cl mulGrp P Mnd N 0 M B N ˙ M B
24 20 13 21 23 syl3anc φ N ˙ M B
25 eqid mulGrp S 𝑠 K I = mulGrp S 𝑠 K I
26 1 2 18 11 3 14 25 4 5 6 7 8 13 21 evlspw φ Q N ˙ M = N mulGrp S 𝑠 K I Q M
27 26 fveq1d φ Q N ˙ M A = N mulGrp S 𝑠 K I Q M A
28 eqid Base S 𝑠 K I = Base S 𝑠 K I
29 eqid mulGrp S = mulGrp S
30 eqid mulGrp S 𝑠 K I = mulGrp S 𝑠 K I
31 7 crngringd φ S Ring
32 ovexd φ K I V
33 5 28 rhmf Q P RingHom S 𝑠 K I Q : B Base S 𝑠 K I
34 16 33 syl φ Q : B Base S 𝑠 K I
35 34 21 ffvelrnd φ Q M Base S 𝑠 K I
36 14 28 25 29 30 12 31 32 13 35 9 pwsexpg φ N mulGrp S 𝑠 K I Q M A = N × ˙ Q M A
37 10 simprd φ Q M A = V
38 37 oveq2d φ N × ˙ Q M A = N × ˙ V
39 27 36 38 3eqtrd φ Q N ˙ M A = N × ˙ V
40 24 39 jca φ N ˙ M B Q N ˙ M A = N × ˙ V