Step |
Hyp |
Ref |
Expression |
1 |
|
evlsaddval.q |
|- Q = ( ( I evalSub S ) ` R ) |
2 |
|
evlsaddval.p |
|- P = ( I mPoly U ) |
3 |
|
evlsaddval.u |
|- U = ( S |`s R ) |
4 |
|
evlsaddval.k |
|- K = ( Base ` S ) |
5 |
|
evlsaddval.b |
|- B = ( Base ` P ) |
6 |
|
evlsaddval.i |
|- ( ph -> I e. Z ) |
7 |
|
evlsaddval.s |
|- ( ph -> S e. CRing ) |
8 |
|
evlsaddval.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
9 |
|
evlsaddval.a |
|- ( ph -> A e. ( K ^m I ) ) |
10 |
|
evlsaddval.m |
|- ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) ) |
11 |
|
evlsexpval.g |
|- .xb = ( .g ` ( mulGrp ` P ) ) |
12 |
|
evlsexpval.f |
|- .^ = ( .g ` ( mulGrp ` S ) ) |
13 |
|
evlsexpval.n |
|- ( ph -> N e. NN0 ) |
14 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
15 |
14 5
|
mgpbas |
|- B = ( Base ` ( mulGrp ` P ) ) |
16 |
|
eqid |
|- ( S ^s ( K ^m I ) ) = ( S ^s ( K ^m I ) ) |
17 |
1 2 3 16 4
|
evlsrhm |
|- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) ) |
18 |
6 7 8 17
|
syl3anc |
|- ( ph -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) ) |
19 |
|
rhmrcl1 |
|- ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> P e. Ring ) |
20 |
14
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
21 |
18 19 20
|
3syl |
|- ( ph -> ( mulGrp ` P ) e. Mnd ) |
22 |
10
|
simpld |
|- ( ph -> M e. B ) |
23 |
15 11 21 13 22
|
mulgnn0cld |
|- ( ph -> ( N .xb M ) e. B ) |
24 |
|
eqid |
|- ( mulGrp ` ( S ^s ( K ^m I ) ) ) = ( mulGrp ` ( S ^s ( K ^m I ) ) ) |
25 |
1 2 14 11 3 16 24 4 5 6 7 8 13 22
|
evlspw |
|- ( ph -> ( Q ` ( N .xb M ) ) = ( N ( .g ` ( mulGrp ` ( S ^s ( K ^m I ) ) ) ) ( Q ` M ) ) ) |
26 |
25
|
fveq1d |
|- ( ph -> ( ( Q ` ( N .xb M ) ) ` A ) = ( ( N ( .g ` ( mulGrp ` ( S ^s ( K ^m I ) ) ) ) ( Q ` M ) ) ` A ) ) |
27 |
|
eqid |
|- ( Base ` ( S ^s ( K ^m I ) ) ) = ( Base ` ( S ^s ( K ^m I ) ) ) |
28 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
29 |
|
eqid |
|- ( .g ` ( mulGrp ` ( S ^s ( K ^m I ) ) ) ) = ( .g ` ( mulGrp ` ( S ^s ( K ^m I ) ) ) ) |
30 |
7
|
crngringd |
|- ( ph -> S e. Ring ) |
31 |
|
ovexd |
|- ( ph -> ( K ^m I ) e. _V ) |
32 |
5 27
|
rhmf |
|- ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) ) |
33 |
18 32
|
syl |
|- ( ph -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) ) |
34 |
33 22
|
ffvelcdmd |
|- ( ph -> ( Q ` M ) e. ( Base ` ( S ^s ( K ^m I ) ) ) ) |
35 |
16 27 24 28 29 12 30 31 13 34 9
|
pwsexpg |
|- ( ph -> ( ( N ( .g ` ( mulGrp ` ( S ^s ( K ^m I ) ) ) ) ( Q ` M ) ) ` A ) = ( N .^ ( ( Q ` M ) ` A ) ) ) |
36 |
10
|
simprd |
|- ( ph -> ( ( Q ` M ) ` A ) = V ) |
37 |
36
|
oveq2d |
|- ( ph -> ( N .^ ( ( Q ` M ) ` A ) ) = ( N .^ V ) ) |
38 |
26 35 37
|
3eqtrd |
|- ( ph -> ( ( Q ` ( N .xb M ) ) ` A ) = ( N .^ V ) ) |
39 |
23 38
|
jca |
|- ( ph -> ( ( N .xb M ) e. B /\ ( ( Q ` ( N .xb M ) ) ` A ) = ( N .^ V ) ) ) |