Step |
Hyp |
Ref |
Expression |
1 |
|
evlsaddval.q |
|- Q = ( ( I evalSub S ) ` R ) |
2 |
|
evlsaddval.p |
|- P = ( I mPoly U ) |
3 |
|
evlsaddval.u |
|- U = ( S |`s R ) |
4 |
|
evlsaddval.k |
|- K = ( Base ` S ) |
5 |
|
evlsaddval.b |
|- B = ( Base ` P ) |
6 |
|
evlsaddval.i |
|- ( ph -> I e. Z ) |
7 |
|
evlsaddval.s |
|- ( ph -> S e. CRing ) |
8 |
|
evlsaddval.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
9 |
|
evlsaddval.a |
|- ( ph -> A e. ( K ^m I ) ) |
10 |
|
evlsaddval.m |
|- ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) ) |
11 |
|
evlsaddval.n |
|- ( ph -> ( N e. B /\ ( ( Q ` N ) ` A ) = W ) ) |
12 |
|
evlsaddval.g |
|- .+b = ( +g ` P ) |
13 |
|
evlsaddval.f |
|- .+ = ( +g ` S ) |
14 |
|
eqid |
|- ( S ^s ( K ^m I ) ) = ( S ^s ( K ^m I ) ) |
15 |
1 2 3 14 4
|
evlsrhm |
|- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) ) |
16 |
6 7 8 15
|
syl3anc |
|- ( ph -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) ) |
17 |
|
rhmghm |
|- ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> Q e. ( P GrpHom ( S ^s ( K ^m I ) ) ) ) |
18 |
16 17
|
syl |
|- ( ph -> Q e. ( P GrpHom ( S ^s ( K ^m I ) ) ) ) |
19 |
|
ghmgrp1 |
|- ( Q e. ( P GrpHom ( S ^s ( K ^m I ) ) ) -> P e. Grp ) |
20 |
18 19
|
syl |
|- ( ph -> P e. Grp ) |
21 |
10
|
simpld |
|- ( ph -> M e. B ) |
22 |
11
|
simpld |
|- ( ph -> N e. B ) |
23 |
5 12
|
grpcl |
|- ( ( P e. Grp /\ M e. B /\ N e. B ) -> ( M .+b N ) e. B ) |
24 |
20 21 22 23
|
syl3anc |
|- ( ph -> ( M .+b N ) e. B ) |
25 |
|
eqid |
|- ( +g ` ( S ^s ( K ^m I ) ) ) = ( +g ` ( S ^s ( K ^m I ) ) ) |
26 |
5 12 25
|
ghmlin |
|- ( ( Q e. ( P GrpHom ( S ^s ( K ^m I ) ) ) /\ M e. B /\ N e. B ) -> ( Q ` ( M .+b N ) ) = ( ( Q ` M ) ( +g ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) ) |
27 |
18 21 22 26
|
syl3anc |
|- ( ph -> ( Q ` ( M .+b N ) ) = ( ( Q ` M ) ( +g ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) ) |
28 |
|
eqid |
|- ( Base ` ( S ^s ( K ^m I ) ) ) = ( Base ` ( S ^s ( K ^m I ) ) ) |
29 |
|
ovexd |
|- ( ph -> ( K ^m I ) e. _V ) |
30 |
5 28
|
rhmf |
|- ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) ) |
31 |
16 30
|
syl |
|- ( ph -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) ) |
32 |
31 21
|
ffvelrnd |
|- ( ph -> ( Q ` M ) e. ( Base ` ( S ^s ( K ^m I ) ) ) ) |
33 |
31 22
|
ffvelrnd |
|- ( ph -> ( Q ` N ) e. ( Base ` ( S ^s ( K ^m I ) ) ) ) |
34 |
14 28 7 29 32 33 13 25
|
pwsplusgval |
|- ( ph -> ( ( Q ` M ) ( +g ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) = ( ( Q ` M ) oF .+ ( Q ` N ) ) ) |
35 |
27 34
|
eqtrd |
|- ( ph -> ( Q ` ( M .+b N ) ) = ( ( Q ` M ) oF .+ ( Q ` N ) ) ) |
36 |
35
|
fveq1d |
|- ( ph -> ( ( Q ` ( M .+b N ) ) ` A ) = ( ( ( Q ` M ) oF .+ ( Q ` N ) ) ` A ) ) |
37 |
14 4 28 7 29 32
|
pwselbas |
|- ( ph -> ( Q ` M ) : ( K ^m I ) --> K ) |
38 |
37
|
ffnd |
|- ( ph -> ( Q ` M ) Fn ( K ^m I ) ) |
39 |
14 4 28 7 29 33
|
pwselbas |
|- ( ph -> ( Q ` N ) : ( K ^m I ) --> K ) |
40 |
39
|
ffnd |
|- ( ph -> ( Q ` N ) Fn ( K ^m I ) ) |
41 |
|
fnfvof |
|- ( ( ( ( Q ` M ) Fn ( K ^m I ) /\ ( Q ` N ) Fn ( K ^m I ) ) /\ ( ( K ^m I ) e. _V /\ A e. ( K ^m I ) ) ) -> ( ( ( Q ` M ) oF .+ ( Q ` N ) ) ` A ) = ( ( ( Q ` M ) ` A ) .+ ( ( Q ` N ) ` A ) ) ) |
42 |
38 40 29 9 41
|
syl22anc |
|- ( ph -> ( ( ( Q ` M ) oF .+ ( Q ` N ) ) ` A ) = ( ( ( Q ` M ) ` A ) .+ ( ( Q ` N ) ` A ) ) ) |
43 |
10
|
simprd |
|- ( ph -> ( ( Q ` M ) ` A ) = V ) |
44 |
11
|
simprd |
|- ( ph -> ( ( Q ` N ) ` A ) = W ) |
45 |
43 44
|
oveq12d |
|- ( ph -> ( ( ( Q ` M ) ` A ) .+ ( ( Q ` N ) ` A ) ) = ( V .+ W ) ) |
46 |
36 42 45
|
3eqtrd |
|- ( ph -> ( ( Q ` ( M .+b N ) ) ` A ) = ( V .+ W ) ) |
47 |
24 46
|
jca |
|- ( ph -> ( ( M .+b N ) e. B /\ ( ( Q ` ( M .+b N ) ) ` A ) = ( V .+ W ) ) ) |