Description: Polynomial evaluation builder for addition. (Contributed by SN, 27-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evlsaddval.q | |
|
evlsaddval.p | |
||
evlsaddval.u | |
||
evlsaddval.k | |
||
evlsaddval.b | |
||
evlsaddval.i | |
||
evlsaddval.s | |
||
evlsaddval.r | |
||
evlsaddval.a | |
||
evlsaddval.m | |
||
evlsaddval.n | |
||
evlsaddval.g | |
||
evlsaddval.f | |
||
Assertion | evlsaddval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsaddval.q | |
|
2 | evlsaddval.p | |
|
3 | evlsaddval.u | |
|
4 | evlsaddval.k | |
|
5 | evlsaddval.b | |
|
6 | evlsaddval.i | |
|
7 | evlsaddval.s | |
|
8 | evlsaddval.r | |
|
9 | evlsaddval.a | |
|
10 | evlsaddval.m | |
|
11 | evlsaddval.n | |
|
12 | evlsaddval.g | |
|
13 | evlsaddval.f | |
|
14 | eqid | |
|
15 | 1 2 3 14 4 | evlsrhm | |
16 | 6 7 8 15 | syl3anc | |
17 | rhmghm | |
|
18 | 16 17 | syl | |
19 | ghmgrp1 | |
|
20 | 18 19 | syl | |
21 | 10 | simpld | |
22 | 11 | simpld | |
23 | 5 12 | grpcl | |
24 | 20 21 22 23 | syl3anc | |
25 | eqid | |
|
26 | 5 12 25 | ghmlin | |
27 | 18 21 22 26 | syl3anc | |
28 | eqid | |
|
29 | ovexd | |
|
30 | 5 28 | rhmf | |
31 | 16 30 | syl | |
32 | 31 21 | ffvelcdmd | |
33 | 31 22 | ffvelcdmd | |
34 | 14 28 7 29 32 33 13 25 | pwsplusgval | |
35 | 27 34 | eqtrd | |
36 | 35 | fveq1d | |
37 | 14 4 28 7 29 32 | pwselbas | |
38 | 37 | ffnd | |
39 | 14 4 28 7 29 33 | pwselbas | |
40 | 39 | ffnd | |
41 | fnfvof | |
|
42 | 38 40 29 9 41 | syl22anc | |
43 | 10 | simprd | |
44 | 11 | simprd | |
45 | 43 44 | oveq12d | |
46 | 36 42 45 | 3eqtrd | |
47 | 24 46 | jca | |