Metamath Proof Explorer


Theorem evlsaddval

Description: Polynomial evaluation builder for addition. (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses evlsaddval.q Q=IevalSubSR
evlsaddval.p P=ImPolyU
evlsaddval.u U=S𝑠R
evlsaddval.k K=BaseS
evlsaddval.b B=BaseP
evlsaddval.i φIZ
evlsaddval.s φSCRing
evlsaddval.r φRSubRingS
evlsaddval.a φAKI
evlsaddval.m φMBQMA=V
evlsaddval.n φNBQNA=W
evlsaddval.g ˙=+P
evlsaddval.f +˙=+S
Assertion evlsaddval φM˙NBQM˙NA=V+˙W

Proof

Step Hyp Ref Expression
1 evlsaddval.q Q=IevalSubSR
2 evlsaddval.p P=ImPolyU
3 evlsaddval.u U=S𝑠R
4 evlsaddval.k K=BaseS
5 evlsaddval.b B=BaseP
6 evlsaddval.i φIZ
7 evlsaddval.s φSCRing
8 evlsaddval.r φRSubRingS
9 evlsaddval.a φAKI
10 evlsaddval.m φMBQMA=V
11 evlsaddval.n φNBQNA=W
12 evlsaddval.g ˙=+P
13 evlsaddval.f +˙=+S
14 eqid S𝑠KI=S𝑠KI
15 1 2 3 14 4 evlsrhm IZSCRingRSubRingSQPRingHomS𝑠KI
16 6 7 8 15 syl3anc φQPRingHomS𝑠KI
17 rhmghm QPRingHomS𝑠KIQPGrpHomS𝑠KI
18 16 17 syl φQPGrpHomS𝑠KI
19 ghmgrp1 QPGrpHomS𝑠KIPGrp
20 18 19 syl φPGrp
21 10 simpld φMB
22 11 simpld φNB
23 5 12 grpcl PGrpMBNBM˙NB
24 20 21 22 23 syl3anc φM˙NB
25 eqid +S𝑠KI=+S𝑠KI
26 5 12 25 ghmlin QPGrpHomS𝑠KIMBNBQM˙N=QM+S𝑠KIQN
27 18 21 22 26 syl3anc φQM˙N=QM+S𝑠KIQN
28 eqid BaseS𝑠KI=BaseS𝑠KI
29 ovexd φKIV
30 5 28 rhmf QPRingHomS𝑠KIQ:BBaseS𝑠KI
31 16 30 syl φQ:BBaseS𝑠KI
32 31 21 ffvelcdmd φQMBaseS𝑠KI
33 31 22 ffvelcdmd φQNBaseS𝑠KI
34 14 28 7 29 32 33 13 25 pwsplusgval φQM+S𝑠KIQN=QM+˙fQN
35 27 34 eqtrd φQM˙N=QM+˙fQN
36 35 fveq1d φQM˙NA=QM+˙fQNA
37 14 4 28 7 29 32 pwselbas φQM:KIK
38 37 ffnd φQMFnKI
39 14 4 28 7 29 33 pwselbas φQN:KIK
40 39 ffnd φQNFnKI
41 fnfvof QMFnKIQNFnKIKIVAKIQM+˙fQNA=QMA+˙QNA
42 38 40 29 9 41 syl22anc φQM+˙fQNA=QMA+˙QNA
43 10 simprd φQMA=V
44 11 simprd φQNA=W
45 43 44 oveq12d φQMA+˙QNA=V+˙W
46 36 42 45 3eqtrd φQM˙NA=V+˙W
47 24 46 jca φM˙NBQM˙NA=V+˙W