Metamath Proof Explorer


Theorem evlsaddval

Description: Polynomial evaluation builder for addition. (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses evlsaddval.q Q = I evalSub S R
evlsaddval.p P = I mPoly U
evlsaddval.u U = S 𝑠 R
evlsaddval.k K = Base S
evlsaddval.b B = Base P
evlsaddval.i φ I Z
evlsaddval.s φ S CRing
evlsaddval.r φ R SubRing S
evlsaddval.a φ A K I
evlsaddval.m φ M B Q M A = V
evlsaddval.n φ N B Q N A = W
evlsaddval.g ˙ = + P
evlsaddval.f + ˙ = + S
Assertion evlsaddval φ M ˙ N B Q M ˙ N A = V + ˙ W

Proof

Step Hyp Ref Expression
1 evlsaddval.q Q = I evalSub S R
2 evlsaddval.p P = I mPoly U
3 evlsaddval.u U = S 𝑠 R
4 evlsaddval.k K = Base S
5 evlsaddval.b B = Base P
6 evlsaddval.i φ I Z
7 evlsaddval.s φ S CRing
8 evlsaddval.r φ R SubRing S
9 evlsaddval.a φ A K I
10 evlsaddval.m φ M B Q M A = V
11 evlsaddval.n φ N B Q N A = W
12 evlsaddval.g ˙ = + P
13 evlsaddval.f + ˙ = + S
14 eqid S 𝑠 K I = S 𝑠 K I
15 1 2 3 14 4 evlsrhm I Z S CRing R SubRing S Q P RingHom S 𝑠 K I
16 6 7 8 15 syl3anc φ Q P RingHom S 𝑠 K I
17 rhmghm Q P RingHom S 𝑠 K I Q P GrpHom S 𝑠 K I
18 16 17 syl φ Q P GrpHom S 𝑠 K I
19 ghmgrp1 Q P GrpHom S 𝑠 K I P Grp
20 18 19 syl φ P Grp
21 10 simpld φ M B
22 11 simpld φ N B
23 5 12 grpcl P Grp M B N B M ˙ N B
24 20 21 22 23 syl3anc φ M ˙ N B
25 eqid + S 𝑠 K I = + S 𝑠 K I
26 5 12 25 ghmlin Q P GrpHom S 𝑠 K I M B N B Q M ˙ N = Q M + S 𝑠 K I Q N
27 18 21 22 26 syl3anc φ Q M ˙ N = Q M + S 𝑠 K I Q N
28 eqid Base S 𝑠 K I = Base S 𝑠 K I
29 ovexd φ K I V
30 5 28 rhmf Q P RingHom S 𝑠 K I Q : B Base S 𝑠 K I
31 16 30 syl φ Q : B Base S 𝑠 K I
32 31 21 ffvelrnd φ Q M Base S 𝑠 K I
33 31 22 ffvelrnd φ Q N Base S 𝑠 K I
34 14 28 7 29 32 33 13 25 pwsplusgval φ Q M + S 𝑠 K I Q N = Q M + ˙ f Q N
35 27 34 eqtrd φ Q M ˙ N = Q M + ˙ f Q N
36 35 fveq1d φ Q M ˙ N A = Q M + ˙ f Q N A
37 14 4 28 7 29 32 pwselbas φ Q M : K I K
38 37 ffnd φ Q M Fn K I
39 14 4 28 7 29 33 pwselbas φ Q N : K I K
40 39 ffnd φ Q N Fn K I
41 fnfvof Q M Fn K I Q N Fn K I K I V A K I Q M + ˙ f Q N A = Q M A + ˙ Q N A
42 38 40 29 9 41 syl22anc φ Q M + ˙ f Q N A = Q M A + ˙ Q N A
43 10 simprd φ Q M A = V
44 11 simprd φ Q N A = W
45 43 44 oveq12d φ Q M A + ˙ Q N A = V + ˙ W
46 36 42 45 3eqtrd φ Q M ˙ N A = V + ˙ W
47 24 46 jca φ M ˙ N B Q M ˙ N A = V + ˙ W