Step |
Hyp |
Ref |
Expression |
1 |
|
evlsaddval.q |
|
2 |
|
evlsaddval.p |
|
3 |
|
evlsaddval.u |
|
4 |
|
evlsaddval.k |
|
5 |
|
evlsaddval.b |
|
6 |
|
evlsaddval.i |
|
7 |
|
evlsaddval.s |
|
8 |
|
evlsaddval.r |
|
9 |
|
evlsaddval.a |
|
10 |
|
evlsaddval.m |
|
11 |
|
evlsaddval.n |
|
12 |
|
evlsmulval.g |
|
13 |
|
evlsmulval.f |
|
14 |
|
eqid |
|
15 |
1 2 3 14 4
|
evlsrhm |
|
16 |
6 7 8 15
|
syl3anc |
|
17 |
|
rhmrcl1 |
|
18 |
16 17
|
syl |
|
19 |
10
|
simpld |
|
20 |
11
|
simpld |
|
21 |
5 12
|
ringcl |
|
22 |
18 19 20 21
|
syl3anc |
|
23 |
|
eqid |
|
24 |
5 12 23
|
rhmmul |
|
25 |
16 19 20 24
|
syl3anc |
|
26 |
|
eqid |
|
27 |
|
ovexd |
|
28 |
5 26
|
rhmf |
|
29 |
16 28
|
syl |
|
30 |
29 19
|
ffvelrnd |
|
31 |
29 20
|
ffvelrnd |
|
32 |
14 26 7 27 30 31 13 23
|
pwsmulrval |
|
33 |
25 32
|
eqtrd |
|
34 |
33
|
fveq1d |
|
35 |
14 4 26 7 27 30
|
pwselbas |
|
36 |
35
|
ffnd |
|
37 |
14 4 26 7 27 31
|
pwselbas |
|
38 |
37
|
ffnd |
|
39 |
|
fnfvof |
|
40 |
36 38 27 9 39
|
syl22anc |
|
41 |
10
|
simprd |
|
42 |
11
|
simprd |
|
43 |
41 42
|
oveq12d |
|
44 |
34 40 43
|
3eqtrd |
|
45 |
22 44
|
jca |
|