Metamath Proof Explorer


Theorem evlsmulval

Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses evlsaddval.q Q = I evalSub S R
evlsaddval.p P = I mPoly U
evlsaddval.u U = S 𝑠 R
evlsaddval.k K = Base S
evlsaddval.b B = Base P
evlsaddval.i φ I Z
evlsaddval.s φ S CRing
evlsaddval.r φ R SubRing S
evlsaddval.a φ A K I
evlsaddval.m φ M B Q M A = V
evlsaddval.n φ N B Q N A = W
evlsmulval.g ˙ = P
evlsmulval.f · ˙ = S
Assertion evlsmulval φ M ˙ N B Q M ˙ N A = V · ˙ W

Proof

Step Hyp Ref Expression
1 evlsaddval.q Q = I evalSub S R
2 evlsaddval.p P = I mPoly U
3 evlsaddval.u U = S 𝑠 R
4 evlsaddval.k K = Base S
5 evlsaddval.b B = Base P
6 evlsaddval.i φ I Z
7 evlsaddval.s φ S CRing
8 evlsaddval.r φ R SubRing S
9 evlsaddval.a φ A K I
10 evlsaddval.m φ M B Q M A = V
11 evlsaddval.n φ N B Q N A = W
12 evlsmulval.g ˙ = P
13 evlsmulval.f · ˙ = S
14 eqid S 𝑠 K I = S 𝑠 K I
15 1 2 3 14 4 evlsrhm I Z S CRing R SubRing S Q P RingHom S 𝑠 K I
16 6 7 8 15 syl3anc φ Q P RingHom S 𝑠 K I
17 rhmrcl1 Q P RingHom S 𝑠 K I P Ring
18 16 17 syl φ P Ring
19 10 simpld φ M B
20 11 simpld φ N B
21 5 12 ringcl P Ring M B N B M ˙ N B
22 18 19 20 21 syl3anc φ M ˙ N B
23 eqid S 𝑠 K I = S 𝑠 K I
24 5 12 23 rhmmul Q P RingHom S 𝑠 K I M B N B Q M ˙ N = Q M S 𝑠 K I Q N
25 16 19 20 24 syl3anc φ Q M ˙ N = Q M S 𝑠 K I Q N
26 eqid Base S 𝑠 K I = Base S 𝑠 K I
27 ovexd φ K I V
28 5 26 rhmf Q P RingHom S 𝑠 K I Q : B Base S 𝑠 K I
29 16 28 syl φ Q : B Base S 𝑠 K I
30 29 19 ffvelrnd φ Q M Base S 𝑠 K I
31 29 20 ffvelrnd φ Q N Base S 𝑠 K I
32 14 26 7 27 30 31 13 23 pwsmulrval φ Q M S 𝑠 K I Q N = Q M · ˙ f Q N
33 25 32 eqtrd φ Q M ˙ N = Q M · ˙ f Q N
34 33 fveq1d φ Q M ˙ N A = Q M · ˙ f Q N A
35 14 4 26 7 27 30 pwselbas φ Q M : K I K
36 35 ffnd φ Q M Fn K I
37 14 4 26 7 27 31 pwselbas φ Q N : K I K
38 37 ffnd φ Q N Fn K I
39 fnfvof Q M Fn K I Q N Fn K I K I V A K I Q M · ˙ f Q N A = Q M A · ˙ Q N A
40 36 38 27 9 39 syl22anc φ Q M · ˙ f Q N A = Q M A · ˙ Q N A
41 10 simprd φ Q M A = V
42 11 simprd φ Q N A = W
43 41 42 oveq12d φ Q M A · ˙ Q N A = V · ˙ W
44 34 40 43 3eqtrd φ Q M ˙ N A = V · ˙ W
45 22 44 jca φ M ˙ N B Q M ˙ N A = V · ˙ W