Metamath Proof Explorer


Theorem evlsmulval

Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses evlsaddval.q
|- Q = ( ( I evalSub S ) ` R )
evlsaddval.p
|- P = ( I mPoly U )
evlsaddval.u
|- U = ( S |`s R )
evlsaddval.k
|- K = ( Base ` S )
evlsaddval.b
|- B = ( Base ` P )
evlsaddval.i
|- ( ph -> I e. Z )
evlsaddval.s
|- ( ph -> S e. CRing )
evlsaddval.r
|- ( ph -> R e. ( SubRing ` S ) )
evlsaddval.a
|- ( ph -> A e. ( K ^m I ) )
evlsaddval.m
|- ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) )
evlsaddval.n
|- ( ph -> ( N e. B /\ ( ( Q ` N ) ` A ) = W ) )
evlsmulval.g
|- .xb = ( .r ` P )
evlsmulval.f
|- .x. = ( .r ` S )
Assertion evlsmulval
|- ( ph -> ( ( M .xb N ) e. B /\ ( ( Q ` ( M .xb N ) ) ` A ) = ( V .x. W ) ) )

Proof

Step Hyp Ref Expression
1 evlsaddval.q
 |-  Q = ( ( I evalSub S ) ` R )
2 evlsaddval.p
 |-  P = ( I mPoly U )
3 evlsaddval.u
 |-  U = ( S |`s R )
4 evlsaddval.k
 |-  K = ( Base ` S )
5 evlsaddval.b
 |-  B = ( Base ` P )
6 evlsaddval.i
 |-  ( ph -> I e. Z )
7 evlsaddval.s
 |-  ( ph -> S e. CRing )
8 evlsaddval.r
 |-  ( ph -> R e. ( SubRing ` S ) )
9 evlsaddval.a
 |-  ( ph -> A e. ( K ^m I ) )
10 evlsaddval.m
 |-  ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) )
11 evlsaddval.n
 |-  ( ph -> ( N e. B /\ ( ( Q ` N ) ` A ) = W ) )
12 evlsmulval.g
 |-  .xb = ( .r ` P )
13 evlsmulval.f
 |-  .x. = ( .r ` S )
14 eqid
 |-  ( S ^s ( K ^m I ) ) = ( S ^s ( K ^m I ) )
15 1 2 3 14 4 evlsrhm
 |-  ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) )
16 6 7 8 15 syl3anc
 |-  ( ph -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) )
17 rhmrcl1
 |-  ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> P e. Ring )
18 16 17 syl
 |-  ( ph -> P e. Ring )
19 10 simpld
 |-  ( ph -> M e. B )
20 11 simpld
 |-  ( ph -> N e. B )
21 5 12 ringcl
 |-  ( ( P e. Ring /\ M e. B /\ N e. B ) -> ( M .xb N ) e. B )
22 18 19 20 21 syl3anc
 |-  ( ph -> ( M .xb N ) e. B )
23 eqid
 |-  ( .r ` ( S ^s ( K ^m I ) ) ) = ( .r ` ( S ^s ( K ^m I ) ) )
24 5 12 23 rhmmul
 |-  ( ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) /\ M e. B /\ N e. B ) -> ( Q ` ( M .xb N ) ) = ( ( Q ` M ) ( .r ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) )
25 16 19 20 24 syl3anc
 |-  ( ph -> ( Q ` ( M .xb N ) ) = ( ( Q ` M ) ( .r ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) )
26 eqid
 |-  ( Base ` ( S ^s ( K ^m I ) ) ) = ( Base ` ( S ^s ( K ^m I ) ) )
27 ovexd
 |-  ( ph -> ( K ^m I ) e. _V )
28 5 26 rhmf
 |-  ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) )
29 16 28 syl
 |-  ( ph -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) )
30 29 19 ffvelrnd
 |-  ( ph -> ( Q ` M ) e. ( Base ` ( S ^s ( K ^m I ) ) ) )
31 29 20 ffvelrnd
 |-  ( ph -> ( Q ` N ) e. ( Base ` ( S ^s ( K ^m I ) ) ) )
32 14 26 7 27 30 31 13 23 pwsmulrval
 |-  ( ph -> ( ( Q ` M ) ( .r ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) = ( ( Q ` M ) oF .x. ( Q ` N ) ) )
33 25 32 eqtrd
 |-  ( ph -> ( Q ` ( M .xb N ) ) = ( ( Q ` M ) oF .x. ( Q ` N ) ) )
34 33 fveq1d
 |-  ( ph -> ( ( Q ` ( M .xb N ) ) ` A ) = ( ( ( Q ` M ) oF .x. ( Q ` N ) ) ` A ) )
35 14 4 26 7 27 30 pwselbas
 |-  ( ph -> ( Q ` M ) : ( K ^m I ) --> K )
36 35 ffnd
 |-  ( ph -> ( Q ` M ) Fn ( K ^m I ) )
37 14 4 26 7 27 31 pwselbas
 |-  ( ph -> ( Q ` N ) : ( K ^m I ) --> K )
38 37 ffnd
 |-  ( ph -> ( Q ` N ) Fn ( K ^m I ) )
39 fnfvof
 |-  ( ( ( ( Q ` M ) Fn ( K ^m I ) /\ ( Q ` N ) Fn ( K ^m I ) ) /\ ( ( K ^m I ) e. _V /\ A e. ( K ^m I ) ) ) -> ( ( ( Q ` M ) oF .x. ( Q ` N ) ) ` A ) = ( ( ( Q ` M ) ` A ) .x. ( ( Q ` N ) ` A ) ) )
40 36 38 27 9 39 syl22anc
 |-  ( ph -> ( ( ( Q ` M ) oF .x. ( Q ` N ) ) ` A ) = ( ( ( Q ` M ) ` A ) .x. ( ( Q ` N ) ` A ) ) )
41 10 simprd
 |-  ( ph -> ( ( Q ` M ) ` A ) = V )
42 11 simprd
 |-  ( ph -> ( ( Q ` N ) ` A ) = W )
43 41 42 oveq12d
 |-  ( ph -> ( ( ( Q ` M ) ` A ) .x. ( ( Q ` N ) ` A ) ) = ( V .x. W ) )
44 34 40 43 3eqtrd
 |-  ( ph -> ( ( Q ` ( M .xb N ) ) ` A ) = ( V .x. W ) )
45 22 44 jca
 |-  ( ph -> ( ( M .xb N ) e. B /\ ( ( Q ` ( M .xb N ) ) ` A ) = ( V .x. W ) ) )