Step |
Hyp |
Ref |
Expression |
1 |
|
evlsmaprhm.q |
|- Q = ( ( I evalSub R ) ` S ) |
2 |
|
evlsmaprhm.p |
|- P = ( I mPoly U ) |
3 |
|
evlsmaprhm.u |
|- U = ( R |`s S ) |
4 |
|
evlsmaprhm.b |
|- B = ( Base ` P ) |
5 |
|
evlsmaprhm.k |
|- K = ( Base ` R ) |
6 |
|
evlsmaprhm.f |
|- F = ( p e. B |-> ( ( Q ` p ) ` A ) ) |
7 |
|
evlsmaprhm.i |
|- ( ph -> I e. V ) |
8 |
|
evlsmaprhm.r |
|- ( ph -> R e. CRing ) |
9 |
|
evlsmaprhm.s |
|- ( ph -> S e. ( SubRing ` R ) ) |
10 |
|
evlsmaprhm.a |
|- ( ph -> A e. ( K ^m I ) ) |
11 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
12 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
13 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
14 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
15 |
3
|
subrgring |
|- ( S e. ( SubRing ` R ) -> U e. Ring ) |
16 |
9 15
|
syl |
|- ( ph -> U e. Ring ) |
17 |
2 7 16
|
mplringd |
|- ( ph -> P e. Ring ) |
18 |
8
|
crngringd |
|- ( ph -> R e. Ring ) |
19 |
|
fveq2 |
|- ( p = ( 1r ` P ) -> ( Q ` p ) = ( Q ` ( 1r ` P ) ) ) |
20 |
19
|
fveq1d |
|- ( p = ( 1r ` P ) -> ( ( Q ` p ) ` A ) = ( ( Q ` ( 1r ` P ) ) ` A ) ) |
21 |
4 11
|
ringidcl |
|- ( P e. Ring -> ( 1r ` P ) e. B ) |
22 |
17 21
|
syl |
|- ( ph -> ( 1r ` P ) e. B ) |
23 |
|
fvexd |
|- ( ph -> ( ( Q ` ( 1r ` P ) ) ` A ) e. _V ) |
24 |
6 20 22 23
|
fvmptd3 |
|- ( ph -> ( F ` ( 1r ` P ) ) = ( ( Q ` ( 1r ` P ) ) ` A ) ) |
25 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
26 |
|
eqid |
|- ( 1r ` U ) = ( 1r ` U ) |
27 |
2 25 26 11 7 16
|
mplascl1 |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` U ) ) = ( 1r ` P ) ) |
28 |
27
|
eqcomd |
|- ( ph -> ( 1r ` P ) = ( ( algSc ` P ) ` ( 1r ` U ) ) ) |
29 |
28
|
fveq2d |
|- ( ph -> ( Q ` ( 1r ` P ) ) = ( Q ` ( ( algSc ` P ) ` ( 1r ` U ) ) ) ) |
30 |
29
|
fveq1d |
|- ( ph -> ( ( Q ` ( 1r ` P ) ) ` A ) = ( ( Q ` ( ( algSc ` P ) ` ( 1r ` U ) ) ) ` A ) ) |
31 |
3 12
|
subrg1 |
|- ( S e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` U ) ) |
32 |
9 31
|
syl |
|- ( ph -> ( 1r ` R ) = ( 1r ` U ) ) |
33 |
12
|
subrg1cl |
|- ( S e. ( SubRing ` R ) -> ( 1r ` R ) e. S ) |
34 |
9 33
|
syl |
|- ( ph -> ( 1r ` R ) e. S ) |
35 |
32 34
|
eqeltrrd |
|- ( ph -> ( 1r ` U ) e. S ) |
36 |
1 2 3 5 4 25 7 8 9 35 10
|
evlsscaval |
|- ( ph -> ( ( ( algSc ` P ) ` ( 1r ` U ) ) e. B /\ ( ( Q ` ( ( algSc ` P ) ` ( 1r ` U ) ) ) ` A ) = ( 1r ` U ) ) ) |
37 |
36
|
simprd |
|- ( ph -> ( ( Q ` ( ( algSc ` P ) ` ( 1r ` U ) ) ) ` A ) = ( 1r ` U ) ) |
38 |
37 32
|
eqtr4d |
|- ( ph -> ( ( Q ` ( ( algSc ` P ) ` ( 1r ` U ) ) ) ` A ) = ( 1r ` R ) ) |
39 |
24 30 38
|
3eqtrd |
|- ( ph -> ( F ` ( 1r ` P ) ) = ( 1r ` R ) ) |
40 |
7
|
adantr |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> I e. V ) |
41 |
8
|
adantr |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> R e. CRing ) |
42 |
9
|
adantr |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> S e. ( SubRing ` R ) ) |
43 |
10
|
adantr |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> A e. ( K ^m I ) ) |
44 |
|
simprl |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> q e. B ) |
45 |
|
eqidd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` q ) ` A ) = ( ( Q ` q ) ` A ) ) |
46 |
44 45
|
jca |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( q e. B /\ ( ( Q ` q ) ` A ) = ( ( Q ` q ) ` A ) ) ) |
47 |
|
simprr |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> r e. B ) |
48 |
|
eqidd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` r ) ` A ) = ( ( Q ` r ) ` A ) ) |
49 |
47 48
|
jca |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( r e. B /\ ( ( Q ` r ) ` A ) = ( ( Q ` r ) ` A ) ) ) |
50 |
1 2 3 5 4 40 41 42 43 46 49 13 14
|
evlsmulval |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( q ( .r ` P ) r ) e. B /\ ( ( Q ` ( q ( .r ` P ) r ) ) ` A ) = ( ( ( Q ` q ) ` A ) ( .r ` R ) ( ( Q ` r ) ` A ) ) ) ) |
51 |
50
|
simprd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` ( q ( .r ` P ) r ) ) ` A ) = ( ( ( Q ` q ) ` A ) ( .r ` R ) ( ( Q ` r ) ` A ) ) ) |
52 |
|
fveq2 |
|- ( p = ( q ( .r ` P ) r ) -> ( Q ` p ) = ( Q ` ( q ( .r ` P ) r ) ) ) |
53 |
52
|
fveq1d |
|- ( p = ( q ( .r ` P ) r ) -> ( ( Q ` p ) ` A ) = ( ( Q ` ( q ( .r ` P ) r ) ) ` A ) ) |
54 |
17
|
adantr |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> P e. Ring ) |
55 |
4 13 54 44 47
|
ringcld |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( q ( .r ` P ) r ) e. B ) |
56 |
|
fvexd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` ( q ( .r ` P ) r ) ) ` A ) e. _V ) |
57 |
6 53 55 56
|
fvmptd3 |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( F ` ( q ( .r ` P ) r ) ) = ( ( Q ` ( q ( .r ` P ) r ) ) ` A ) ) |
58 |
|
fveq2 |
|- ( p = q -> ( Q ` p ) = ( Q ` q ) ) |
59 |
58
|
fveq1d |
|- ( p = q -> ( ( Q ` p ) ` A ) = ( ( Q ` q ) ` A ) ) |
60 |
|
fvexd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` q ) ` A ) e. _V ) |
61 |
6 59 44 60
|
fvmptd3 |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( F ` q ) = ( ( Q ` q ) ` A ) ) |
62 |
|
fveq2 |
|- ( p = r -> ( Q ` p ) = ( Q ` r ) ) |
63 |
62
|
fveq1d |
|- ( p = r -> ( ( Q ` p ) ` A ) = ( ( Q ` r ) ` A ) ) |
64 |
|
fvexd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` r ) ` A ) e. _V ) |
65 |
6 63 47 64
|
fvmptd3 |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( F ` r ) = ( ( Q ` r ) ` A ) ) |
66 |
61 65
|
oveq12d |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( F ` q ) ( .r ` R ) ( F ` r ) ) = ( ( ( Q ` q ) ` A ) ( .r ` R ) ( ( Q ` r ) ` A ) ) ) |
67 |
51 57 66
|
3eqtr4d |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( F ` ( q ( .r ` P ) r ) ) = ( ( F ` q ) ( .r ` R ) ( F ` r ) ) ) |
68 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
69 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
70 |
7
|
adantr |
|- ( ( ph /\ p e. B ) -> I e. V ) |
71 |
8
|
adantr |
|- ( ( ph /\ p e. B ) -> R e. CRing ) |
72 |
9
|
adantr |
|- ( ( ph /\ p e. B ) -> S e. ( SubRing ` R ) ) |
73 |
|
simpr |
|- ( ( ph /\ p e. B ) -> p e. B ) |
74 |
10
|
adantr |
|- ( ( ph /\ p e. B ) -> A e. ( K ^m I ) ) |
75 |
1 2 3 4 5 70 71 72 73 74
|
evlscl |
|- ( ( ph /\ p e. B ) -> ( ( Q ` p ) ` A ) e. K ) |
76 |
75 6
|
fmptd |
|- ( ph -> F : B --> K ) |
77 |
1 2 3 5 4 40 41 42 43 46 49 68 69
|
evlsaddval |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( q ( +g ` P ) r ) e. B /\ ( ( Q ` ( q ( +g ` P ) r ) ) ` A ) = ( ( ( Q ` q ) ` A ) ( +g ` R ) ( ( Q ` r ) ` A ) ) ) ) |
78 |
77
|
simprd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` ( q ( +g ` P ) r ) ) ` A ) = ( ( ( Q ` q ) ` A ) ( +g ` R ) ( ( Q ` r ) ` A ) ) ) |
79 |
|
fveq2 |
|- ( p = ( q ( +g ` P ) r ) -> ( Q ` p ) = ( Q ` ( q ( +g ` P ) r ) ) ) |
80 |
79
|
fveq1d |
|- ( p = ( q ( +g ` P ) r ) -> ( ( Q ` p ) ` A ) = ( ( Q ` ( q ( +g ` P ) r ) ) ` A ) ) |
81 |
17
|
ringgrpd |
|- ( ph -> P e. Grp ) |
82 |
81
|
adantr |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> P e. Grp ) |
83 |
4 68 82 44 47
|
grpcld |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( q ( +g ` P ) r ) e. B ) |
84 |
|
fvexd |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( Q ` ( q ( +g ` P ) r ) ) ` A ) e. _V ) |
85 |
6 80 83 84
|
fvmptd3 |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( F ` ( q ( +g ` P ) r ) ) = ( ( Q ` ( q ( +g ` P ) r ) ) ` A ) ) |
86 |
61 65
|
oveq12d |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( ( F ` q ) ( +g ` R ) ( F ` r ) ) = ( ( ( Q ` q ) ` A ) ( +g ` R ) ( ( Q ` r ) ` A ) ) ) |
87 |
78 85 86
|
3eqtr4d |
|- ( ( ph /\ ( q e. B /\ r e. B ) ) -> ( F ` ( q ( +g ` P ) r ) ) = ( ( F ` q ) ( +g ` R ) ( F ` r ) ) ) |
88 |
4 11 12 13 14 17 18 39 67 5 68 69 76 87
|
isrhmd |
|- ( ph -> F e. ( P RingHom R ) ) |