Metamath Proof Explorer


Theorem evlscl

Description: A polynomial over the ring R evaluates to an element in R . (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses evlscl.q
|- Q = ( ( I evalSub R ) ` S )
evlscl.p
|- P = ( I mPoly U )
evlscl.u
|- U = ( R |`s S )
evlscl.b
|- B = ( Base ` P )
evlscl.k
|- K = ( Base ` R )
evlscl.i
|- ( ph -> I e. V )
evlscl.r
|- ( ph -> R e. CRing )
evlscl.s
|- ( ph -> S e. ( SubRing ` R ) )
evlscl.f
|- ( ph -> F e. B )
evlscl.a
|- ( ph -> A e. ( K ^m I ) )
Assertion evlscl
|- ( ph -> ( ( Q ` F ) ` A ) e. K )

Proof

Step Hyp Ref Expression
1 evlscl.q
 |-  Q = ( ( I evalSub R ) ` S )
2 evlscl.p
 |-  P = ( I mPoly U )
3 evlscl.u
 |-  U = ( R |`s S )
4 evlscl.b
 |-  B = ( Base ` P )
5 evlscl.k
 |-  K = ( Base ` R )
6 evlscl.i
 |-  ( ph -> I e. V )
7 evlscl.r
 |-  ( ph -> R e. CRing )
8 evlscl.s
 |-  ( ph -> S e. ( SubRing ` R ) )
9 evlscl.f
 |-  ( ph -> F e. B )
10 evlscl.a
 |-  ( ph -> A e. ( K ^m I ) )
11 eqid
 |-  ( R ^s ( K ^m I ) ) = ( R ^s ( K ^m I ) )
12 eqid
 |-  ( Base ` ( R ^s ( K ^m I ) ) ) = ( Base ` ( R ^s ( K ^m I ) ) )
13 ovexd
 |-  ( ph -> ( K ^m I ) e. _V )
14 1 2 3 11 5 evlsrhm
 |-  ( ( I e. V /\ R e. CRing /\ S e. ( SubRing ` R ) ) -> Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) )
15 6 7 8 14 syl3anc
 |-  ( ph -> Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) )
16 4 12 rhmf
 |-  ( Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) -> Q : B --> ( Base ` ( R ^s ( K ^m I ) ) ) )
17 15 16 syl
 |-  ( ph -> Q : B --> ( Base ` ( R ^s ( K ^m I ) ) ) )
18 17 9 ffvelcdmd
 |-  ( ph -> ( Q ` F ) e. ( Base ` ( R ^s ( K ^m I ) ) ) )
19 11 5 12 7 13 18 pwselbas
 |-  ( ph -> ( Q ` F ) : ( K ^m I ) --> K )
20 19 10 ffvelcdmd
 |-  ( ph -> ( ( Q ` F ) ` A ) e. K )