| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlscl.q |
|- Q = ( ( I evalSub R ) ` S ) |
| 2 |
|
evlscl.p |
|- P = ( I mPoly U ) |
| 3 |
|
evlscl.u |
|- U = ( R |`s S ) |
| 4 |
|
evlscl.b |
|- B = ( Base ` P ) |
| 5 |
|
evlscl.k |
|- K = ( Base ` R ) |
| 6 |
|
evlscl.i |
|- ( ph -> I e. V ) |
| 7 |
|
evlscl.r |
|- ( ph -> R e. CRing ) |
| 8 |
|
evlscl.s |
|- ( ph -> S e. ( SubRing ` R ) ) |
| 9 |
|
evlscl.f |
|- ( ph -> F e. B ) |
| 10 |
|
evlscl.a |
|- ( ph -> A e. ( K ^m I ) ) |
| 11 |
|
eqid |
|- ( R ^s ( K ^m I ) ) = ( R ^s ( K ^m I ) ) |
| 12 |
|
eqid |
|- ( Base ` ( R ^s ( K ^m I ) ) ) = ( Base ` ( R ^s ( K ^m I ) ) ) |
| 13 |
|
ovexd |
|- ( ph -> ( K ^m I ) e. _V ) |
| 14 |
1 2 3 11 5
|
evlsrhm |
|- ( ( I e. V /\ R e. CRing /\ S e. ( SubRing ` R ) ) -> Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) ) |
| 15 |
6 7 8 14
|
syl3anc |
|- ( ph -> Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) ) |
| 16 |
4 12
|
rhmf |
|- ( Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) -> Q : B --> ( Base ` ( R ^s ( K ^m I ) ) ) ) |
| 17 |
15 16
|
syl |
|- ( ph -> Q : B --> ( Base ` ( R ^s ( K ^m I ) ) ) ) |
| 18 |
17 9
|
ffvelcdmd |
|- ( ph -> ( Q ` F ) e. ( Base ` ( R ^s ( K ^m I ) ) ) ) |
| 19 |
11 5 12 7 13 18
|
pwselbas |
|- ( ph -> ( Q ` F ) : ( K ^m I ) --> K ) |
| 20 |
19 10
|
ffvelcdmd |
|- ( ph -> ( ( Q ` F ) ` A ) e. K ) |