Step |
Hyp |
Ref |
Expression |
1 |
|
evlsval3.q |
|- Q = ( ( I evalSub S ) ` R ) |
2 |
|
evlsval3.p |
|- P = ( I mPoly U ) |
3 |
|
evlsval3.b |
|- B = ( Base ` P ) |
4 |
|
evlsval3.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
5 |
|
evlsval3.k |
|- K = ( Base ` S ) |
6 |
|
evlsval3.u |
|- U = ( S |`s R ) |
7 |
|
evlsval3.t |
|- T = ( S ^s ( K ^m I ) ) |
8 |
|
evlsval3.m |
|- M = ( mulGrp ` T ) |
9 |
|
evlsval3.w |
|- .^ = ( .g ` M ) |
10 |
|
evlsval3.x |
|- .x. = ( .r ` T ) |
11 |
|
evlsval3.e |
|- E = ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) |
12 |
|
evlsval3.f |
|- F = ( x e. R |-> ( ( K ^m I ) X. { x } ) ) |
13 |
|
evlsval3.g |
|- G = ( x e. I |-> ( a e. ( K ^m I ) |-> ( a ` x ) ) ) |
14 |
|
evlsval3.i |
|- ( ph -> I e. V ) |
15 |
|
evlsval3.s |
|- ( ph -> S e. CRing ) |
16 |
|
evlsval3.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
17 |
|
eqid |
|- ( I mVar U ) = ( I mVar U ) |
18 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
19 |
1 2 17 6 7 5 18 12 13
|
evlsval |
|- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q = ( iota_ f e. ( P RingHom T ) ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) ) ) |
20 |
14 15 16 19
|
syl3anc |
|- ( ph -> Q = ( iota_ f e. ( P RingHom T ) ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) ) ) |
21 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
22 |
6
|
subrgcrng |
|- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing ) |
23 |
15 16 22
|
syl2anc |
|- ( ph -> U e. CRing ) |
24 |
|
ovexd |
|- ( ph -> ( K ^m I ) e. _V ) |
25 |
7
|
pwscrng |
|- ( ( S e. CRing /\ ( K ^m I ) e. _V ) -> T e. CRing ) |
26 |
15 24 25
|
syl2anc |
|- ( ph -> T e. CRing ) |
27 |
5
|
subrgss |
|- ( R e. ( SubRing ` S ) -> R C_ K ) |
28 |
16 27
|
syl |
|- ( ph -> R C_ K ) |
29 |
28
|
resmptd |
|- ( ph -> ( ( x e. K |-> ( ( K ^m I ) X. { x } ) ) |` R ) = ( x e. R |-> ( ( K ^m I ) X. { x } ) ) ) |
30 |
12 29
|
eqtr4id |
|- ( ph -> F = ( ( x e. K |-> ( ( K ^m I ) X. { x } ) ) |` R ) ) |
31 |
15
|
crngringd |
|- ( ph -> S e. Ring ) |
32 |
|
eqid |
|- ( x e. K |-> ( ( K ^m I ) X. { x } ) ) = ( x e. K |-> ( ( K ^m I ) X. { x } ) ) |
33 |
7 5 32
|
pwsdiagrhm |
|- ( ( S e. Ring /\ ( K ^m I ) e. _V ) -> ( x e. K |-> ( ( K ^m I ) X. { x } ) ) e. ( S RingHom T ) ) |
34 |
31 24 33
|
syl2anc |
|- ( ph -> ( x e. K |-> ( ( K ^m I ) X. { x } ) ) e. ( S RingHom T ) ) |
35 |
6
|
resrhm |
|- ( ( ( x e. K |-> ( ( K ^m I ) X. { x } ) ) e. ( S RingHom T ) /\ R e. ( SubRing ` S ) ) -> ( ( x e. K |-> ( ( K ^m I ) X. { x } ) ) |` R ) e. ( U RingHom T ) ) |
36 |
34 16 35
|
syl2anc |
|- ( ph -> ( ( x e. K |-> ( ( K ^m I ) X. { x } ) ) |` R ) e. ( U RingHom T ) ) |
37 |
30 36
|
eqeltrd |
|- ( ph -> F e. ( U RingHom T ) ) |
38 |
5
|
fvexi |
|- K e. _V |
39 |
|
elmapg |
|- ( ( K e. _V /\ I e. V ) -> ( a e. ( K ^m I ) <-> a : I --> K ) ) |
40 |
38 14 39
|
sylancr |
|- ( ph -> ( a e. ( K ^m I ) <-> a : I --> K ) ) |
41 |
40
|
biimpa |
|- ( ( ph /\ a e. ( K ^m I ) ) -> a : I --> K ) |
42 |
41
|
adantlr |
|- ( ( ( ph /\ x e. I ) /\ a e. ( K ^m I ) ) -> a : I --> K ) |
43 |
|
simplr |
|- ( ( ( ph /\ x e. I ) /\ a e. ( K ^m I ) ) -> x e. I ) |
44 |
42 43
|
ffvelrnd |
|- ( ( ( ph /\ x e. I ) /\ a e. ( K ^m I ) ) -> ( a ` x ) e. K ) |
45 |
44
|
fmpttd |
|- ( ( ph /\ x e. I ) -> ( a e. ( K ^m I ) |-> ( a ` x ) ) : ( K ^m I ) --> K ) |
46 |
|
ovexd |
|- ( ( ph /\ x e. I ) -> ( K ^m I ) e. _V ) |
47 |
7 5 21
|
pwselbasb |
|- ( ( S e. CRing /\ ( K ^m I ) e. _V ) -> ( ( a e. ( K ^m I ) |-> ( a ` x ) ) e. ( Base ` T ) <-> ( a e. ( K ^m I ) |-> ( a ` x ) ) : ( K ^m I ) --> K ) ) |
48 |
15 46 47
|
syl2an2r |
|- ( ( ph /\ x e. I ) -> ( ( a e. ( K ^m I ) |-> ( a ` x ) ) e. ( Base ` T ) <-> ( a e. ( K ^m I ) |-> ( a ` x ) ) : ( K ^m I ) --> K ) ) |
49 |
45 48
|
mpbird |
|- ( ( ph /\ x e. I ) -> ( a e. ( K ^m I ) |-> ( a ` x ) ) e. ( Base ` T ) ) |
50 |
49 13
|
fmptd |
|- ( ph -> G : I --> ( Base ` T ) ) |
51 |
2 3 21 4 8 9 10 17 11 14 23 26 37 50 18
|
evlslem1 |
|- ( ph -> ( E e. ( P RingHom T ) /\ ( E o. ( algSc ` P ) ) = F /\ ( E o. ( I mVar U ) ) = G ) ) |
52 |
51
|
simp2d |
|- ( ph -> ( E o. ( algSc ` P ) ) = F ) |
53 |
51
|
simp3d |
|- ( ph -> ( E o. ( I mVar U ) ) = G ) |
54 |
51
|
simp1d |
|- ( ph -> E e. ( P RingHom T ) ) |
55 |
2 21 18 17 14 23 26 37 50
|
evlseu |
|- ( ph -> E! f e. ( P RingHom T ) ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) ) |
56 |
|
coeq1 |
|- ( f = E -> ( f o. ( algSc ` P ) ) = ( E o. ( algSc ` P ) ) ) |
57 |
56
|
eqeq1d |
|- ( f = E -> ( ( f o. ( algSc ` P ) ) = F <-> ( E o. ( algSc ` P ) ) = F ) ) |
58 |
|
coeq1 |
|- ( f = E -> ( f o. ( I mVar U ) ) = ( E o. ( I mVar U ) ) ) |
59 |
58
|
eqeq1d |
|- ( f = E -> ( ( f o. ( I mVar U ) ) = G <-> ( E o. ( I mVar U ) ) = G ) ) |
60 |
57 59
|
anbi12d |
|- ( f = E -> ( ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) <-> ( ( E o. ( algSc ` P ) ) = F /\ ( E o. ( I mVar U ) ) = G ) ) ) |
61 |
60
|
riota2 |
|- ( ( E e. ( P RingHom T ) /\ E! f e. ( P RingHom T ) ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) ) -> ( ( ( E o. ( algSc ` P ) ) = F /\ ( E o. ( I mVar U ) ) = G ) <-> ( iota_ f e. ( P RingHom T ) ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) ) = E ) ) |
62 |
54 55 61
|
syl2anc |
|- ( ph -> ( ( ( E o. ( algSc ` P ) ) = F /\ ( E o. ( I mVar U ) ) = G ) <-> ( iota_ f e. ( P RingHom T ) ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) ) = E ) ) |
63 |
52 53 62
|
mpbi2and |
|- ( ph -> ( iota_ f e. ( P RingHom T ) ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) ) = E ) |
64 |
20 63
|
eqtrd |
|- ( ph -> Q = E ) |