Metamath Proof Explorer


Theorem evlsval3

Description: Give a formula for the polynomial evaluation homomorphism. (Contributed by SN, 26-Jul-2024)

Ref Expression
Hypotheses evlsval3.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
evlsval3.p 𝑃 = ( 𝐼 mPoly 𝑈 )
evlsval3.b 𝐵 = ( Base ‘ 𝑃 )
evlsval3.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
evlsval3.k 𝐾 = ( Base ‘ 𝑆 )
evlsval3.u 𝑈 = ( 𝑆s 𝑅 )
evlsval3.t 𝑇 = ( 𝑆s ( 𝐾m 𝐼 ) )
evlsval3.m 𝑀 = ( mulGrp ‘ 𝑇 )
evlsval3.w = ( .g𝑀 )
evlsval3.x · = ( .r𝑇 )
evlsval3.e 𝐸 = ( 𝑝𝐵 ↦ ( 𝑇 Σg ( 𝑏𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝𝑏 ) ) · ( 𝑀 Σg ( 𝑏f 𝐺 ) ) ) ) ) )
evlsval3.f 𝐹 = ( 𝑥𝑅 ↦ ( ( 𝐾m 𝐼 ) × { 𝑥 } ) )
evlsval3.g 𝐺 = ( 𝑥𝐼 ↦ ( 𝑎 ∈ ( 𝐾m 𝐼 ) ↦ ( 𝑎𝑥 ) ) )
evlsval3.i ( 𝜑𝐼𝑉 )
evlsval3.s ( 𝜑𝑆 ∈ CRing )
evlsval3.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
Assertion evlsval3 ( 𝜑𝑄 = 𝐸 )

Proof

Step Hyp Ref Expression
1 evlsval3.q 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 )
2 evlsval3.p 𝑃 = ( 𝐼 mPoly 𝑈 )
3 evlsval3.b 𝐵 = ( Base ‘ 𝑃 )
4 evlsval3.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
5 evlsval3.k 𝐾 = ( Base ‘ 𝑆 )
6 evlsval3.u 𝑈 = ( 𝑆s 𝑅 )
7 evlsval3.t 𝑇 = ( 𝑆s ( 𝐾m 𝐼 ) )
8 evlsval3.m 𝑀 = ( mulGrp ‘ 𝑇 )
9 evlsval3.w = ( .g𝑀 )
10 evlsval3.x · = ( .r𝑇 )
11 evlsval3.e 𝐸 = ( 𝑝𝐵 ↦ ( 𝑇 Σg ( 𝑏𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝𝑏 ) ) · ( 𝑀 Σg ( 𝑏f 𝐺 ) ) ) ) ) )
12 evlsval3.f 𝐹 = ( 𝑥𝑅 ↦ ( ( 𝐾m 𝐼 ) × { 𝑥 } ) )
13 evlsval3.g 𝐺 = ( 𝑥𝐼 ↦ ( 𝑎 ∈ ( 𝐾m 𝐼 ) ↦ ( 𝑎𝑥 ) ) )
14 evlsval3.i ( 𝜑𝐼𝑉 )
15 evlsval3.s ( 𝜑𝑆 ∈ CRing )
16 evlsval3.r ( 𝜑𝑅 ∈ ( SubRing ‘ 𝑆 ) )
17 eqid ( 𝐼 mVar 𝑈 ) = ( 𝐼 mVar 𝑈 )
18 eqid ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 )
19 1 2 17 6 7 5 18 12 13 evlsval ( ( 𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( 𝑓 ∈ ( 𝑃 RingHom 𝑇 ) ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) )
20 14 15 16 19 syl3anc ( 𝜑𝑄 = ( 𝑓 ∈ ( 𝑃 RingHom 𝑇 ) ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) )
21 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
22 6 subrgcrng ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing )
23 15 16 22 syl2anc ( 𝜑𝑈 ∈ CRing )
24 ovexd ( 𝜑 → ( 𝐾m 𝐼 ) ∈ V )
25 7 pwscrng ( ( 𝑆 ∈ CRing ∧ ( 𝐾m 𝐼 ) ∈ V ) → 𝑇 ∈ CRing )
26 15 24 25 syl2anc ( 𝜑𝑇 ∈ CRing )
27 5 subrgss ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅𝐾 )
28 16 27 syl ( 𝜑𝑅𝐾 )
29 28 resmptd ( 𝜑 → ( ( 𝑥𝐾 ↦ ( ( 𝐾m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) = ( 𝑥𝑅 ↦ ( ( 𝐾m 𝐼 ) × { 𝑥 } ) ) )
30 12 29 eqtr4id ( 𝜑𝐹 = ( ( 𝑥𝐾 ↦ ( ( 𝐾m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) )
31 15 crngringd ( 𝜑𝑆 ∈ Ring )
32 eqid ( 𝑥𝐾 ↦ ( ( 𝐾m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥𝐾 ↦ ( ( 𝐾m 𝐼 ) × { 𝑥 } ) )
33 7 5 32 pwsdiagrhm ( ( 𝑆 ∈ Ring ∧ ( 𝐾m 𝐼 ) ∈ V ) → ( 𝑥𝐾 ↦ ( ( 𝐾m 𝐼 ) × { 𝑥 } ) ) ∈ ( 𝑆 RingHom 𝑇 ) )
34 31 24 33 syl2anc ( 𝜑 → ( 𝑥𝐾 ↦ ( ( 𝐾m 𝐼 ) × { 𝑥 } ) ) ∈ ( 𝑆 RingHom 𝑇 ) )
35 6 resrhm ( ( ( 𝑥𝐾 ↦ ( ( 𝐾m 𝐼 ) × { 𝑥 } ) ) ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑥𝐾 ↦ ( ( 𝐾m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) ∈ ( 𝑈 RingHom 𝑇 ) )
36 34 16 35 syl2anc ( 𝜑 → ( ( 𝑥𝐾 ↦ ( ( 𝐾m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) ∈ ( 𝑈 RingHom 𝑇 ) )
37 30 36 eqeltrd ( 𝜑𝐹 ∈ ( 𝑈 RingHom 𝑇 ) )
38 5 fvexi 𝐾 ∈ V
39 elmapg ( ( 𝐾 ∈ V ∧ 𝐼𝑉 ) → ( 𝑎 ∈ ( 𝐾m 𝐼 ) ↔ 𝑎 : 𝐼𝐾 ) )
40 38 14 39 sylancr ( 𝜑 → ( 𝑎 ∈ ( 𝐾m 𝐼 ) ↔ 𝑎 : 𝐼𝐾 ) )
41 40 biimpa ( ( 𝜑𝑎 ∈ ( 𝐾m 𝐼 ) ) → 𝑎 : 𝐼𝐾 )
42 41 adantlr ( ( ( 𝜑𝑥𝐼 ) ∧ 𝑎 ∈ ( 𝐾m 𝐼 ) ) → 𝑎 : 𝐼𝐾 )
43 simplr ( ( ( 𝜑𝑥𝐼 ) ∧ 𝑎 ∈ ( 𝐾m 𝐼 ) ) → 𝑥𝐼 )
44 42 43 ffvelrnd ( ( ( 𝜑𝑥𝐼 ) ∧ 𝑎 ∈ ( 𝐾m 𝐼 ) ) → ( 𝑎𝑥 ) ∈ 𝐾 )
45 44 fmpttd ( ( 𝜑𝑥𝐼 ) → ( 𝑎 ∈ ( 𝐾m 𝐼 ) ↦ ( 𝑎𝑥 ) ) : ( 𝐾m 𝐼 ) ⟶ 𝐾 )
46 ovexd ( ( 𝜑𝑥𝐼 ) → ( 𝐾m 𝐼 ) ∈ V )
47 7 5 21 pwselbasb ( ( 𝑆 ∈ CRing ∧ ( 𝐾m 𝐼 ) ∈ V ) → ( ( 𝑎 ∈ ( 𝐾m 𝐼 ) ↦ ( 𝑎𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ↔ ( 𝑎 ∈ ( 𝐾m 𝐼 ) ↦ ( 𝑎𝑥 ) ) : ( 𝐾m 𝐼 ) ⟶ 𝐾 ) )
48 15 46 47 syl2an2r ( ( 𝜑𝑥𝐼 ) → ( ( 𝑎 ∈ ( 𝐾m 𝐼 ) ↦ ( 𝑎𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ↔ ( 𝑎 ∈ ( 𝐾m 𝐼 ) ↦ ( 𝑎𝑥 ) ) : ( 𝐾m 𝐼 ) ⟶ 𝐾 ) )
49 45 48 mpbird ( ( 𝜑𝑥𝐼 ) → ( 𝑎 ∈ ( 𝐾m 𝐼 ) ↦ ( 𝑎𝑥 ) ) ∈ ( Base ‘ 𝑇 ) )
50 49 13 fmptd ( 𝜑𝐺 : 𝐼 ⟶ ( Base ‘ 𝑇 ) )
51 2 3 21 4 8 9 10 17 11 14 23 26 37 50 18 evlslem1 ( 𝜑 → ( 𝐸 ∈ ( 𝑃 RingHom 𝑇 ) ∧ ( 𝐸 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝐸 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) )
52 51 simp2d ( 𝜑 → ( 𝐸 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 )
53 51 simp3d ( 𝜑 → ( 𝐸 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 )
54 51 simp1d ( 𝜑𝐸 ∈ ( 𝑃 RingHom 𝑇 ) )
55 2 21 18 17 14 23 26 37 50 evlseu ( 𝜑 → ∃! 𝑓 ∈ ( 𝑃 RingHom 𝑇 ) ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) )
56 coeq1 ( 𝑓 = 𝐸 → ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = ( 𝐸 ∘ ( algSc ‘ 𝑃 ) ) )
57 56 eqeq1d ( 𝑓 = 𝐸 → ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ↔ ( 𝐸 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ) )
58 coeq1 ( 𝑓 = 𝐸 → ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = ( 𝐸 ∘ ( 𝐼 mVar 𝑈 ) ) )
59 58 eqeq1d ( 𝑓 = 𝐸 → ( ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ↔ ( 𝐸 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) )
60 57 59 anbi12d ( 𝑓 = 𝐸 → ( ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ↔ ( ( 𝐸 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝐸 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) )
61 60 riota2 ( ( 𝐸 ∈ ( 𝑃 RingHom 𝑇 ) ∧ ∃! 𝑓 ∈ ( 𝑃 RingHom 𝑇 ) ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) → ( ( ( 𝐸 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝐸 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ↔ ( 𝑓 ∈ ( 𝑃 RingHom 𝑇 ) ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) = 𝐸 ) )
62 54 55 61 syl2anc ( 𝜑 → ( ( ( 𝐸 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝐸 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ↔ ( 𝑓 ∈ ( 𝑃 RingHom 𝑇 ) ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) = 𝐸 ) )
63 52 53 62 mpbi2and ( 𝜑 → ( 𝑓 ∈ ( 𝑃 RingHom 𝑇 ) ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) = 𝐸 )
64 20 63 eqtrd ( 𝜑𝑄 = 𝐸 )