| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evlslem1.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
evlslem1.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
evlslem1.c |
⊢ 𝐶 = ( Base ‘ 𝑆 ) |
| 4 |
|
evlslem1.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 5 |
|
evlslem1.t |
⊢ 𝑇 = ( mulGrp ‘ 𝑆 ) |
| 6 |
|
evlslem1.x |
⊢ ↑ = ( .g ‘ 𝑇 ) |
| 7 |
|
evlslem1.m |
⊢ · = ( .r ‘ 𝑆 ) |
| 8 |
|
evlslem1.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
| 9 |
|
evlslem1.e |
⊢ 𝐸 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 10 |
|
evlslem1.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 11 |
|
evlslem1.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 12 |
|
evlslem1.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
| 13 |
|
evlslem1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 14 |
|
evlslem1.g |
⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 15 |
|
evlslem1.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 16 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 17 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 18 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 19 |
11
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 20 |
1 10 19
|
mplringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 21 |
12
|
crngringd |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 22 |
|
2fveq3 |
⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) = ( 𝐸 ‘ ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 24 |
22 23
|
eqeq12d |
⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐸 ‘ ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 25 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 26 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 27 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐼 ∈ 𝑊 ) |
| 28 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 30 |
1 4 25 26 15 27 28 29
|
mplascl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐴 ‘ 𝑥 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝑅 ) ) ) ) |
| 31 |
30
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) = ( 𝐸 ‘ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 32 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ CRing ) |
| 33 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑆 ∈ CRing ) |
| 34 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 35 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 36 |
4
|
psrbag0 |
⊢ ( 𝐼 ∈ 𝑊 → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| 37 |
10 36
|
syl |
⊢ ( 𝜑 → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| 39 |
1 2 3 26 4 5 6 7 8 9 27 32 33 34 35 25 38 29
|
evlslem3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐸 ‘ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝑇 Σg ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) ) ) ) |
| 40 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 0 ∈ ℤ ) |
| 41 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ V ) |
| 42 |
|
fconstmpt |
⊢ ( 𝐼 × { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) |
| 43 |
42
|
a1i |
⊢ ( 𝜑 → ( 𝐼 × { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
| 44 |
14
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 45 |
10 40 41 43 44
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( 0 ↑ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 46 |
14
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) |
| 47 |
5 3
|
mgpbas |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
| 48 |
5 17
|
ringidval |
⊢ ( 1r ‘ 𝑆 ) = ( 0g ‘ 𝑇 ) |
| 49 |
47 48 6
|
mulg0 |
⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( 0 ↑ ( 𝐺 ‘ 𝑥 ) ) = ( 1r ‘ 𝑆 ) ) |
| 50 |
46 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 0 ↑ ( 𝐺 ‘ 𝑥 ) ) = ( 1r ‘ 𝑆 ) ) |
| 51 |
50
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 0 ↑ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 1r ‘ 𝑆 ) ) ) |
| 52 |
45 51
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( 1r ‘ 𝑆 ) ) ) |
| 53 |
52
|
oveq2d |
⊢ ( 𝜑 → ( 𝑇 Σg ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) ) = ( 𝑇 Σg ( 𝑥 ∈ 𝐼 ↦ ( 1r ‘ 𝑆 ) ) ) ) |
| 54 |
5
|
crngmgp |
⊢ ( 𝑆 ∈ CRing → 𝑇 ∈ CMnd ) |
| 55 |
12 54
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ CMnd ) |
| 56 |
55
|
cmnmndd |
⊢ ( 𝜑 → 𝑇 ∈ Mnd ) |
| 57 |
48
|
gsumz |
⊢ ( ( 𝑇 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → ( 𝑇 Σg ( 𝑥 ∈ 𝐼 ↦ ( 1r ‘ 𝑆 ) ) ) = ( 1r ‘ 𝑆 ) ) |
| 58 |
56 10 57
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 Σg ( 𝑥 ∈ 𝐼 ↦ ( 1r ‘ 𝑆 ) ) ) = ( 1r ‘ 𝑆 ) ) |
| 59 |
53 58
|
eqtrd |
⊢ ( 𝜑 → ( 𝑇 Σg ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) ) = ( 1r ‘ 𝑆 ) ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑇 Σg ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) ) = ( 1r ‘ 𝑆 ) ) |
| 61 |
60
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝑇 Σg ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 1r ‘ 𝑆 ) ) ) |
| 62 |
26 3
|
rhmf |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) |
| 63 |
13 62
|
syl |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) |
| 64 |
63
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
| 65 |
3 7 17
|
ringridm |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝑥 ) · ( 1r ‘ 𝑆 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 66 |
21 64 65
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 1r ‘ 𝑆 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 67 |
61 66
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝑇 Σg ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 68 |
31 39 67
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 69 |
68
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 70 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 71 |
26 70
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 72 |
19 71
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 73 |
24 69 72
|
rspcdva |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 74 |
1
|
mplassa |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ AssAlg ) |
| 75 |
10 11 74
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ∈ AssAlg ) |
| 76 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 77 |
15 76
|
asclrhm |
⊢ ( 𝑃 ∈ AssAlg → 𝐴 ∈ ( ( Scalar ‘ 𝑃 ) RingHom 𝑃 ) ) |
| 78 |
75 77
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ( ( Scalar ‘ 𝑃 ) RingHom 𝑃 ) ) |
| 79 |
1 10 11
|
mplsca |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 80 |
79
|
oveq1d |
⊢ ( 𝜑 → ( 𝑅 RingHom 𝑃 ) = ( ( Scalar ‘ 𝑃 ) RingHom 𝑃 ) ) |
| 81 |
78 80
|
eleqtrrd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑅 RingHom 𝑃 ) ) |
| 82 |
70 16
|
rhm1 |
⊢ ( 𝐴 ∈ ( 𝑅 RingHom 𝑃 ) → ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 83 |
81 82
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 84 |
83
|
fveq2d |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝐸 ‘ ( 1r ‘ 𝑃 ) ) ) |
| 85 |
70 17
|
rhm1 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 86 |
13 85
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 87 |
73 84 86
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 1r ‘ 𝑃 ) ) = ( 1r ‘ 𝑆 ) ) |
| 88 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 89 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 90 |
20
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 91 |
21
|
ringgrpd |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 92 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 93 |
|
ringcmn |
⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ CMnd ) |
| 94 |
21 93
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ CMnd ) |
| 95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑆 ∈ CMnd ) |
| 96 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 97 |
4 96
|
rabex2 |
⊢ 𝐷 ∈ V |
| 98 |
97
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐷 ∈ V ) |
| 99 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐼 ∈ 𝑊 ) |
| 100 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑅 ∈ CRing ) |
| 101 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑆 ∈ CRing ) |
| 102 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 103 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 104 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) |
| 105 |
1 2 3 4 5 6 7 8 9 99 100 101 102 103 104
|
evlslem6 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ∧ ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) ) |
| 106 |
105
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ) |
| 107 |
105
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
| 108 |
3 92 95 98 106 107
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ∈ 𝐶 ) |
| 109 |
108 9
|
fmptd |
⊢ ( 𝜑 → 𝐸 : 𝐵 ⟶ 𝐶 ) |
| 110 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 111 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑥 ∈ 𝐵 ) |
| 112 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑦 ∈ 𝐵 ) |
| 113 |
1 2 110 88 111 112
|
mpladd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 114 |
113
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ‘ 𝑏 ) ) |
| 115 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 116 |
1 26 2 4 115
|
mplelf |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 117 |
116
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 Fn 𝐷 ) |
| 118 |
117
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑥 Fn 𝐷 ) |
| 119 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
| 120 |
1 26 2 4 119
|
mplelf |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 121 |
120
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 Fn 𝐷 ) |
| 122 |
121
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑦 Fn 𝐷 ) |
| 123 |
97
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝐷 ∈ V ) |
| 124 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ 𝐷 ) |
| 125 |
|
fnfvof |
⊢ ( ( ( 𝑥 Fn 𝐷 ∧ 𝑦 Fn 𝐷 ) ∧ ( 𝐷 ∈ V ∧ 𝑏 ∈ 𝐷 ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ‘ 𝑏 ) = ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) |
| 126 |
118 122 123 124 125
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ‘ 𝑏 ) = ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) |
| 127 |
114 126
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) = ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) |
| 128 |
127
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) = ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) ) |
| 129 |
|
rhmghm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 130 |
13 129
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 131 |
130
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 132 |
116
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑥 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 133 |
120
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑦 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 134 |
26 110 89
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( 𝑥 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) ) |
| 135 |
131 132 133 134
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) ) |
| 136 |
128 135
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) ) |
| 137 |
136
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) |
| 138 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ Ring ) |
| 139 |
63
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) |
| 140 |
139 132
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ∈ 𝐶 ) |
| 141 |
139 133
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ∈ 𝐶 ) |
| 142 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑇 ∈ CMnd ) |
| 143 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 144 |
4 47 6 142 124 143
|
psrbagev2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) |
| 145 |
3 89 7
|
ringdir |
⊢ ( ( 𝑆 ∈ Ring ∧ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ∈ 𝐶 ∧ ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ∈ 𝐶 ∧ ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) ) → ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 146 |
138 140 141 144 145
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 147 |
137 146
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 148 |
147
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 149 |
97
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐷 ∈ V ) |
| 150 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ∈ V ) |
| 151 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ∈ V ) |
| 152 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 153 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 154 |
149 150 151 152 153
|
offval2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ∘f ( +g ‘ 𝑆 ) ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 155 |
148 154
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ∘f ( +g ‘ 𝑆 ) ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 156 |
155
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( 𝑆 Σg ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ∘f ( +g ‘ 𝑆 ) ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) ) |
| 157 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ CMnd ) |
| 158 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑊 ) |
| 159 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑅 ∈ CRing ) |
| 160 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ CRing ) |
| 161 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 162 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 163 |
1 2 3 4 5 6 7 8 9 158 159 160 161 162 115
|
evlslem6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ∧ ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) ) |
| 164 |
163
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ) |
| 165 |
1 2 3 4 5 6 7 8 9 158 159 160 161 162 119
|
evlslem6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ∧ ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) ) |
| 166 |
165
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ) |
| 167 |
163
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
| 168 |
165
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
| 169 |
3 92 89 157 149 164 166 167 168
|
gsumadd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ∘f ( +g ‘ 𝑆 ) ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) = ( ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ( +g ‘ 𝑆 ) ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) ) |
| 170 |
156 169
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ( +g ‘ 𝑆 ) ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) ) |
| 171 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ Grp ) |
| 172 |
2 88
|
grpcl |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 ) |
| 173 |
171 115 119 172
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 ) |
| 174 |
|
fveq1 |
⊢ ( 𝑝 = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) → ( 𝑝 ‘ 𝑏 ) = ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) |
| 175 |
174
|
fveq2d |
⊢ ( 𝑝 = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) → ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) = ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) ) |
| 176 |
175
|
oveq1d |
⊢ ( 𝑝 = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) → ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) |
| 177 |
176
|
mpteq2dv |
⊢ ( 𝑝 = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 178 |
177
|
oveq2d |
⊢ ( 𝑝 = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 179 |
|
ovex |
⊢ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ∈ V |
| 180 |
178 9 179
|
fvmpt |
⊢ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 → ( 𝐸 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 181 |
173 180
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 182 |
|
fveq1 |
⊢ ( 𝑝 = 𝑥 → ( 𝑝 ‘ 𝑏 ) = ( 𝑥 ‘ 𝑏 ) ) |
| 183 |
182
|
fveq2d |
⊢ ( 𝑝 = 𝑥 → ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) = ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ) |
| 184 |
183
|
oveq1d |
⊢ ( 𝑝 = 𝑥 → ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) |
| 185 |
184
|
mpteq2dv |
⊢ ( 𝑝 = 𝑥 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 186 |
185
|
oveq2d |
⊢ ( 𝑝 = 𝑥 → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 187 |
|
ovex |
⊢ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ∈ V |
| 188 |
186 9 187
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝐸 ‘ 𝑥 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 189 |
115 188
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑥 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 190 |
|
fveq1 |
⊢ ( 𝑝 = 𝑦 → ( 𝑝 ‘ 𝑏 ) = ( 𝑦 ‘ 𝑏 ) ) |
| 191 |
190
|
fveq2d |
⊢ ( 𝑝 = 𝑦 → ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) = ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) |
| 192 |
191
|
oveq1d |
⊢ ( 𝑝 = 𝑦 → ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) |
| 193 |
192
|
mpteq2dv |
⊢ ( 𝑝 = 𝑦 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 194 |
193
|
oveq2d |
⊢ ( 𝑝 = 𝑦 → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 195 |
|
ovex |
⊢ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ∈ V |
| 196 |
194 9 195
|
fvmpt |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝐸 ‘ 𝑦 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 197 |
196
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 198 |
189 197
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐸 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐸 ‘ 𝑦 ) ) = ( ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ( +g ‘ 𝑆 ) ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) ) |
| 199 |
170 181 198
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐸 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐸 ‘ 𝑦 ) ) ) |
| 200 |
2 3 88 89 90 91 109 199
|
isghmd |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) ) |
| 201 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 202 |
201 5
|
rhmmhm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom 𝑇 ) ) |
| 203 |
13 202
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom 𝑇 ) ) |
| 204 |
203
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom 𝑇 ) ) |
| 205 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑥 ∈ 𝐵 ) |
| 206 |
1 26 2 4 205
|
mplelf |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑥 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 207 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑧 ∈ 𝐷 ) |
| 208 |
206 207
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝑥 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 209 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 210 |
1 26 2 4 209
|
mplelf |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑦 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 211 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑤 ∈ 𝐷 ) |
| 212 |
210 211
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ) |
| 213 |
201 26
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 214 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 215 |
201 214
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 216 |
5 7
|
mgpplusg |
⊢ · = ( +g ‘ 𝑇 ) |
| 217 |
213 215 216
|
mhmlin |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom 𝑇 ) ∧ ( 𝑥 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 218 |
204 208 212 217
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 219 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → 𝑇 ∈ Mnd ) |
| 220 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝑧 ∈ 𝐷 ) |
| 221 |
4
|
psrbagf |
⊢ ( 𝑧 ∈ 𝐷 → 𝑧 : 𝐼 ⟶ ℕ0 ) |
| 222 |
220 221
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝑧 : 𝐼 ⟶ ℕ0 ) |
| 223 |
222
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑧 ‘ 𝑣 ) ∈ ℕ0 ) |
| 224 |
4
|
psrbagf |
⊢ ( 𝑤 ∈ 𝐷 → 𝑤 : 𝐼 ⟶ ℕ0 ) |
| 225 |
224
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝑤 : 𝐼 ⟶ ℕ0 ) |
| 226 |
225
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑤 ‘ 𝑣 ) ∈ ℕ0 ) |
| 227 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 228 |
227
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑣 ) ∈ 𝐶 ) |
| 229 |
47 6 216
|
mulgnn0dir |
⊢ ( ( 𝑇 ∈ Mnd ∧ ( ( 𝑧 ‘ 𝑣 ) ∈ ℕ0 ∧ ( 𝑤 ‘ 𝑣 ) ∈ ℕ0 ∧ ( 𝐺 ‘ 𝑣 ) ∈ 𝐶 ) ) → ( ( ( 𝑧 ‘ 𝑣 ) + ( 𝑤 ‘ 𝑣 ) ) ↑ ( 𝐺 ‘ 𝑣 ) ) = ( ( ( 𝑧 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) · ( ( 𝑤 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) ) |
| 230 |
219 223 226 228 229
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( ( 𝑧 ‘ 𝑣 ) + ( 𝑤 ‘ 𝑣 ) ) ↑ ( 𝐺 ‘ 𝑣 ) ) = ( ( ( 𝑧 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) · ( ( 𝑤 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) ) |
| 231 |
230
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑧 ‘ 𝑣 ) + ( 𝑤 ‘ 𝑣 ) ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) = ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑧 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) · ( ( 𝑤 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) ) ) |
| 232 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝐼 ∈ 𝑊 ) |
| 233 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑧 ‘ 𝑣 ) + ( 𝑤 ‘ 𝑣 ) ) ∈ V ) |
| 234 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑣 ) ∈ V ) |
| 235 |
222
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝑧 Fn 𝐼 ) |
| 236 |
225
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝑤 Fn 𝐼 ) |
| 237 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
| 238 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑧 ‘ 𝑣 ) = ( 𝑧 ‘ 𝑣 ) ) |
| 239 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑤 ‘ 𝑣 ) = ( 𝑤 ‘ 𝑣 ) ) |
| 240 |
235 236 232 232 237 238 239
|
offval |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑧 ∘f + 𝑤 ) = ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑧 ‘ 𝑣 ) + ( 𝑤 ‘ 𝑣 ) ) ) ) |
| 241 |
14
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑣 ∈ 𝐼 ↦ ( 𝐺 ‘ 𝑣 ) ) ) |
| 242 |
241
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝐺 = ( 𝑣 ∈ 𝐼 ↦ ( 𝐺 ‘ 𝑣 ) ) ) |
| 243 |
232 233 234 240 242
|
offval2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) = ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑧 ‘ 𝑣 ) + ( 𝑤 ‘ 𝑣 ) ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) ) |
| 244 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑧 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ∈ V ) |
| 245 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑤 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ∈ V ) |
| 246 |
14
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐼 ) |
| 247 |
246
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝐺 Fn 𝐼 ) |
| 248 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑣 ) = ( 𝐺 ‘ 𝑣 ) ) |
| 249 |
235 247 232 232 237 238 248
|
offval |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑧 ∘f ↑ 𝐺 ) = ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑧 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) ) |
| 250 |
236 247 232 232 237 239 248
|
offval |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑤 ∘f ↑ 𝐺 ) = ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑤 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) ) |
| 251 |
232 244 245 249 250
|
offval2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( ( 𝑧 ∘f ↑ 𝐺 ) ∘f · ( 𝑤 ∘f ↑ 𝐺 ) ) = ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑧 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) · ( ( 𝑤 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) ) ) |
| 252 |
231 243 251
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) = ( ( 𝑧 ∘f ↑ 𝐺 ) ∘f · ( 𝑤 ∘f ↑ 𝐺 ) ) ) |
| 253 |
252
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑇 Σg ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) ) = ( 𝑇 Σg ( ( 𝑧 ∘f ↑ 𝐺 ) ∘f · ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) |
| 254 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝑇 ∈ CMnd ) |
| 255 |
4 47 6 48 254 220 227
|
psrbagev1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( ( 𝑧 ∘f ↑ 𝐺 ) : 𝐼 ⟶ 𝐶 ∧ ( 𝑧 ∘f ↑ 𝐺 ) finSupp ( 1r ‘ 𝑆 ) ) ) |
| 256 |
255
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑧 ∘f ↑ 𝐺 ) : 𝐼 ⟶ 𝐶 ) |
| 257 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝑤 ∈ 𝐷 ) |
| 258 |
4 47 6 48 254 257 227
|
psrbagev1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( ( 𝑤 ∘f ↑ 𝐺 ) : 𝐼 ⟶ 𝐶 ∧ ( 𝑤 ∘f ↑ 𝐺 ) finSupp ( 1r ‘ 𝑆 ) ) ) |
| 259 |
258
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑤 ∘f ↑ 𝐺 ) : 𝐼 ⟶ 𝐶 ) |
| 260 |
255
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑧 ∘f ↑ 𝐺 ) finSupp ( 1r ‘ 𝑆 ) ) |
| 261 |
258
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑤 ∘f ↑ 𝐺 ) finSupp ( 1r ‘ 𝑆 ) ) |
| 262 |
47 48 216 254 232 256 259 260 261
|
gsumadd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑇 Σg ( ( 𝑧 ∘f ↑ 𝐺 ) ∘f · ( 𝑤 ∘f ↑ 𝐺 ) ) ) = ( ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) |
| 263 |
253 262
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑇 Σg ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) ) = ( ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) |
| 264 |
263
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝑇 Σg ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) ) = ( ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) |
| 265 |
218 264
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) · ( 𝑇 Σg ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) · ( ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) ) |
| 266 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑇 ∈ CMnd ) |
| 267 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) |
| 268 |
267 208
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐶 ) |
| 269 |
267 212
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ∈ 𝐶 ) |
| 270 |
4 47 6 254 220 227
|
psrbagev2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) |
| 271 |
270
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) |
| 272 |
4 47 6 254 257 227
|
psrbagev2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) |
| 273 |
272
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) |
| 274 |
47 216
|
cmn4 |
⊢ ( ( 𝑇 ∈ CMnd ∧ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐶 ∧ ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ∈ 𝐶 ) ∧ ( ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ∧ ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) ) → ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) · ( ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ) · ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) ) |
| 275 |
266 268 269 271 273 274
|
syl122anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) · ( ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ) · ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) ) |
| 276 |
265 275
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) · ( 𝑇 Σg ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ) · ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) ) |
| 277 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝐼 ∈ 𝑊 ) |
| 278 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑅 ∈ CRing ) |
| 279 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑆 ∈ CRing ) |
| 280 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 281 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 282 |
4
|
psrbagaddcl |
⊢ ( ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) → ( 𝑧 ∘f + 𝑤 ) ∈ 𝐷 ) |
| 283 |
282
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝑧 ∘f + 𝑤 ) ∈ 𝐷 ) |
| 284 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑅 ∈ Ring ) |
| 285 |
26 214
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 286 |
284 208 212 285
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 287 |
1 2 3 26 4 5 6 7 8 9 277 278 279 280 281 25 283 286
|
evlslem3 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = ( 𝑧 ∘f + 𝑤 ) , ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) · ( 𝑇 Σg ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) ) ) ) |
| 288 |
1 2 3 26 4 5 6 7 8 9 277 278 279 280 281 25 207 208
|
evlslem3 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = 𝑧 , ( 𝑥 ‘ 𝑧 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ) ) |
| 289 |
1 2 3 26 4 5 6 7 8 9 277 278 279 280 281 25 211 212
|
evlslem3 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = 𝑤 , ( 𝑦 ‘ 𝑤 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) |
| 290 |
288 289
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = 𝑧 , ( 𝑥 ‘ 𝑧 ) , ( 0g ‘ 𝑅 ) ) ) ) · ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = 𝑤 , ( 𝑦 ‘ 𝑤 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ) · ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) ) |
| 291 |
276 287 290
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = ( 𝑧 ∘f + 𝑤 ) , ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = 𝑧 , ( 𝑥 ‘ 𝑧 ) , ( 0g ‘ 𝑅 ) ) ) ) · ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = 𝑤 , ( 𝑦 ‘ 𝑤 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) |
| 292 |
1 2 7 25 4 10 11 12 200 291
|
evlslem2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐸 ‘ 𝑥 ) · ( 𝐸 ‘ 𝑦 ) ) ) |
| 293 |
2 16 17 18 7 20 21 87 292 3 88 89 109 199
|
isrhmd |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑃 RingHom 𝑆 ) ) |
| 294 |
|
ovex |
⊢ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ∈ V |
| 295 |
294 9
|
fnmpti |
⊢ 𝐸 Fn 𝐵 |
| 296 |
295
|
a1i |
⊢ ( 𝜑 → 𝐸 Fn 𝐵 ) |
| 297 |
26 2
|
rhmf |
⊢ ( 𝐴 ∈ ( 𝑅 RingHom 𝑃 ) → 𝐴 : ( Base ‘ 𝑅 ) ⟶ 𝐵 ) |
| 298 |
81 297
|
syl |
⊢ ( 𝜑 → 𝐴 : ( Base ‘ 𝑅 ) ⟶ 𝐵 ) |
| 299 |
298
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn ( Base ‘ 𝑅 ) ) |
| 300 |
298
|
frnd |
⊢ ( 𝜑 → ran 𝐴 ⊆ 𝐵 ) |
| 301 |
|
fnco |
⊢ ( ( 𝐸 Fn 𝐵 ∧ 𝐴 Fn ( Base ‘ 𝑅 ) ∧ ran 𝐴 ⊆ 𝐵 ) → ( 𝐸 ∘ 𝐴 ) Fn ( Base ‘ 𝑅 ) ) |
| 302 |
296 299 300 301
|
syl3anc |
⊢ ( 𝜑 → ( 𝐸 ∘ 𝐴 ) Fn ( Base ‘ 𝑅 ) ) |
| 303 |
63
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝑅 ) ) |
| 304 |
|
fvco2 |
⊢ ( ( 𝐴 Fn ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐸 ∘ 𝐴 ) ‘ 𝑥 ) = ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) ) |
| 305 |
299 304
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐸 ∘ 𝐴 ) ‘ 𝑥 ) = ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) ) |
| 306 |
305 68
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐸 ∘ 𝐴 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 307 |
302 303 306
|
eqfnfvd |
⊢ ( 𝜑 → ( 𝐸 ∘ 𝐴 ) = 𝐹 ) |
| 308 |
1 8 2 10 19
|
mvrf2 |
⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |
| 309 |
308
|
ffnd |
⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
| 310 |
308
|
frnd |
⊢ ( 𝜑 → ran 𝑉 ⊆ 𝐵 ) |
| 311 |
|
fnco |
⊢ ( ( 𝐸 Fn 𝐵 ∧ 𝑉 Fn 𝐼 ∧ ran 𝑉 ⊆ 𝐵 ) → ( 𝐸 ∘ 𝑉 ) Fn 𝐼 ) |
| 312 |
296 309 310 311
|
syl3anc |
⊢ ( 𝜑 → ( 𝐸 ∘ 𝑉 ) Fn 𝐼 ) |
| 313 |
|
fvco2 |
⊢ ( ( 𝑉 Fn 𝐼 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐸 ∘ 𝑉 ) ‘ 𝑥 ) = ( 𝐸 ‘ ( 𝑉 ‘ 𝑥 ) ) ) |
| 314 |
309 313
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐸 ∘ 𝑉 ) ‘ 𝑥 ) = ( 𝐸 ‘ ( 𝑉 ‘ 𝑥 ) ) ) |
| 315 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 316 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ CRing ) |
| 317 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
| 318 |
8 4 25 70 315 316 317
|
mvrval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 319 |
318
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐸 ‘ ( 𝑉 ‘ 𝑥 ) ) = ( 𝐸 ‘ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 320 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ CRing ) |
| 321 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 322 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 323 |
4
|
psrbagsn |
⊢ ( 𝐼 ∈ 𝑊 → ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∈ 𝐷 ) |
| 324 |
10 323
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∈ 𝐷 ) |
| 325 |
324
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∈ 𝐷 ) |
| 326 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 327 |
1 2 3 26 4 5 6 7 8 9 315 316 320 321 322 25 325 326
|
evlslem3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐸 ‘ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) · ( 𝑇 Σg ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) ) ) ) |
| 328 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 329 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 330 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 331 |
329 330
|
ifcli |
⊢ if ( 𝑧 = 𝑥 , 1 , 0 ) ∈ ℕ0 |
| 332 |
331
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → if ( 𝑧 = 𝑥 , 1 , 0 ) ∈ ℕ0 ) |
| 333 |
14
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐶 ) |
| 334 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ) |
| 335 |
14
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ 𝐼 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 336 |
10 332 333 334 335
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) = ( 𝑧 ∈ 𝐼 ↦ ( if ( 𝑧 = 𝑥 , 1 , 0 ) ↑ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 337 |
|
oveq1 |
⊢ ( 1 = if ( 𝑧 = 𝑥 , 1 , 0 ) → ( 1 ↑ ( 𝐺 ‘ 𝑧 ) ) = ( if ( 𝑧 = 𝑥 , 1 , 0 ) ↑ ( 𝐺 ‘ 𝑧 ) ) ) |
| 338 |
337
|
eqeq1d |
⊢ ( 1 = if ( 𝑧 = 𝑥 , 1 , 0 ) → ( ( 1 ↑ ( 𝐺 ‘ 𝑧 ) ) = if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ↔ ( if ( 𝑧 = 𝑥 , 1 , 0 ) ↑ ( 𝐺 ‘ 𝑧 ) ) = if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ) |
| 339 |
|
oveq1 |
⊢ ( 0 = if ( 𝑧 = 𝑥 , 1 , 0 ) → ( 0 ↑ ( 𝐺 ‘ 𝑧 ) ) = ( if ( 𝑧 = 𝑥 , 1 , 0 ) ↑ ( 𝐺 ‘ 𝑧 ) ) ) |
| 340 |
339
|
eqeq1d |
⊢ ( 0 = if ( 𝑧 = 𝑥 , 1 , 0 ) → ( ( 0 ↑ ( 𝐺 ‘ 𝑧 ) ) = if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ↔ ( if ( 𝑧 = 𝑥 , 1 , 0 ) ↑ ( 𝐺 ‘ 𝑧 ) ) = if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ) |
| 341 |
333
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑧 = 𝑥 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐶 ) |
| 342 |
47 6
|
mulg1 |
⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ 𝐶 → ( 1 ↑ ( 𝐺 ‘ 𝑧 ) ) = ( 𝐺 ‘ 𝑧 ) ) |
| 343 |
341 342
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑧 = 𝑥 ) → ( 1 ↑ ( 𝐺 ‘ 𝑧 ) ) = ( 𝐺 ‘ 𝑧 ) ) |
| 344 |
|
iftrue |
⊢ ( 𝑧 = 𝑥 → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) = ( 𝐺 ‘ 𝑧 ) ) |
| 345 |
344
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑧 = 𝑥 ) → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) = ( 𝐺 ‘ 𝑧 ) ) |
| 346 |
343 345
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑧 = 𝑥 ) → ( 1 ↑ ( 𝐺 ‘ 𝑧 ) ) = if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) |
| 347 |
47 48 6
|
mulg0 |
⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ 𝐶 → ( 0 ↑ ( 𝐺 ‘ 𝑧 ) ) = ( 1r ‘ 𝑆 ) ) |
| 348 |
333 347
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 0 ↑ ( 𝐺 ‘ 𝑧 ) ) = ( 1r ‘ 𝑆 ) ) |
| 349 |
348
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ ¬ 𝑧 = 𝑥 ) → ( 0 ↑ ( 𝐺 ‘ 𝑧 ) ) = ( 1r ‘ 𝑆 ) ) |
| 350 |
|
iffalse |
⊢ ( ¬ 𝑧 = 𝑥 → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) = ( 1r ‘ 𝑆 ) ) |
| 351 |
350
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ ¬ 𝑧 = 𝑥 ) → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) = ( 1r ‘ 𝑆 ) ) |
| 352 |
349 351
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ ¬ 𝑧 = 𝑥 ) → ( 0 ↑ ( 𝐺 ‘ 𝑧 ) ) = if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) |
| 353 |
338 340 346 352
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( if ( 𝑧 = 𝑥 , 1 , 0 ) ↑ ( 𝐺 ‘ 𝑧 ) ) = if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) |
| 354 |
353
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ ( if ( 𝑧 = 𝑥 , 1 , 0 ) ↑ ( 𝐺 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ) |
| 355 |
336 354
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ) |
| 356 |
355
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ) |
| 357 |
356
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 Σg ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) ) = ( 𝑇 Σg ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ) ) |
| 358 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑇 ∈ Mnd ) |
| 359 |
333
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐶 ) |
| 360 |
3 17
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ 𝐶 ) |
| 361 |
21 360
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ 𝐶 ) |
| 362 |
361
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) → ( 1r ‘ 𝑆 ) ∈ 𝐶 ) |
| 363 |
359 362
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ∈ 𝐶 ) |
| 364 |
363
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) : 𝐼 ⟶ 𝐶 ) |
| 365 |
|
eldifsnneq |
⊢ ( 𝑧 ∈ ( 𝐼 ∖ { 𝑥 } ) → ¬ 𝑧 = 𝑥 ) |
| 366 |
365 350
|
syl |
⊢ ( 𝑧 ∈ ( 𝐼 ∖ { 𝑥 } ) → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) = ( 1r ‘ 𝑆 ) ) |
| 367 |
366
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑧 ∈ ( 𝐼 ∖ { 𝑥 } ) ) → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) = ( 1r ‘ 𝑆 ) ) |
| 368 |
367 315
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) supp ( 1r ‘ 𝑆 ) ) ⊆ { 𝑥 } ) |
| 369 |
47 48 358 315 317 364 368
|
gsumpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 Σg ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ) = ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ‘ 𝑥 ) ) |
| 370 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 371 |
344 370
|
eqtrd |
⊢ ( 𝑧 = 𝑥 → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 372 |
|
eqid |
⊢ ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) |
| 373 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑥 ) ∈ V |
| 374 |
371 372 373
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 375 |
374
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 376 |
357 369 375
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 Σg ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 377 |
328 376
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) · ( 𝑇 Σg ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) ) ) = ( ( 1r ‘ 𝑆 ) · ( 𝐺 ‘ 𝑥 ) ) ) |
| 378 |
3 7 17
|
ringlidm |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) → ( ( 1r ‘ 𝑆 ) · ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 379 |
21 46 378
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 1r ‘ 𝑆 ) · ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 380 |
377 379
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) · ( 𝑇 Σg ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 381 |
319 327 380
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐸 ‘ ( 𝑉 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 382 |
314 381
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐸 ∘ 𝑉 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 383 |
312 246 382
|
eqfnfvd |
⊢ ( 𝜑 → ( 𝐸 ∘ 𝑉 ) = 𝐺 ) |
| 384 |
293 307 383
|
3jca |
⊢ ( 𝜑 → ( 𝐸 ∈ ( 𝑃 RingHom 𝑆 ) ∧ ( 𝐸 ∘ 𝐴 ) = 𝐹 ∧ ( 𝐸 ∘ 𝑉 ) = 𝐺 ) ) |