Step |
Hyp |
Ref |
Expression |
1 |
|
evlslem2.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
evlslem2.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
evlslem2.m |
⊢ · = ( .r ‘ 𝑆 ) |
4 |
|
evlslem2.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
evlslem2.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
6 |
|
evlslem2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
7 |
|
evlslem2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
8 |
|
evlslem2.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
9 |
|
evlslem2.e1 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) ) |
10 |
|
evlslem2.e2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) ) → ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑗 ∘f + 𝑖 ) , ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) , 0 ) ) ) = ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
13 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
14 |
5 13
|
rabex2 |
⊢ 𝐷 ∈ V |
15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐷 ∈ V ) |
16 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
17 |
7 16
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
18 |
1 6 17
|
mplringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ Ring ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
21 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
22 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
23 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
24 |
1 20 2 5 23
|
mplelf |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
25 |
24
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝑥 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
26 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → 𝑗 ∈ 𝐷 ) |
27 |
1 5 4 20 21 22 2 25 26
|
mplmon2cl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ 𝐵 ) |
28 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
29 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
30 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
31 |
1 20 2 5 30
|
mplelf |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
32 |
31
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → ( 𝑦 ‘ 𝑖 ) ∈ ( Base ‘ 𝑅 ) ) |
33 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → 𝑖 ∈ 𝐷 ) |
34 |
1 5 4 20 28 29 2 32 33
|
mplmon2cl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ 𝐵 ) |
35 |
14
|
mptex |
⊢ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∈ V |
36 |
|
funmpt |
⊢ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) |
37 |
|
fvex |
⊢ ( 0g ‘ 𝑃 ) ∈ V |
38 |
35 36 37
|
3pm3.2i |
⊢ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) |
39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ) |
40 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
41 |
1 2 4 40
|
mplelsfi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 finSupp 0 ) |
42 |
41
|
fsuppimpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 supp 0 ) ∈ Fin ) |
43 |
1 20 2 5 40
|
mplelf |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
44 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 supp 0 ) ⊆ ( 𝑦 supp 0 ) ) |
45 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐷 ∈ V ) |
46 |
4
|
fvexi |
⊢ 0 ∈ V |
47 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 0 ∈ V ) |
48 |
43 44 45 47
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → ( 𝑦 ‘ 𝑗 ) = 0 ) |
49 |
48
|
ifeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) = if ( 𝑘 = 𝑗 , 0 , 0 ) ) |
50 |
|
ifid |
⊢ if ( 𝑘 = 𝑗 , 0 , 0 ) = 0 |
51 |
49 50
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) = 0 ) |
52 |
51
|
mpteq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ 0 ) ) |
53 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
54 |
17 53
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
55 |
1 5 4 12 6 54
|
mpl0 |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝐷 × { 0 } ) ) |
56 |
|
fconstmpt |
⊢ ( 𝐷 × { 0 } ) = ( 𝑘 ∈ 𝐷 ↦ 0 ) |
57 |
55 56
|
eqtrdi |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝑘 ∈ 𝐷 ↦ 0 ) ) |
58 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → ( 0g ‘ 𝑃 ) = ( 𝑘 ∈ 𝐷 ↦ 0 ) ) |
59 |
52 58
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑗 ∈ ( 𝐷 ∖ ( 𝑦 supp 0 ) ) ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) = ( 0g ‘ 𝑃 ) ) |
60 |
59 45
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑦 supp 0 ) ) |
61 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( 𝑦 supp 0 ) ∈ Fin ∧ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( 𝑦 supp 0 ) ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
62 |
39 42 60 61
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
63 |
62
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
64 |
|
fveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ‘ 𝑗 ) = ( 𝑥 ‘ 𝑗 ) ) |
65 |
64
|
ifeq1d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) = if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) |
66 |
65
|
mpteq2dv |
⊢ ( 𝑦 = 𝑥 → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) |
67 |
66
|
mpteq2dv |
⊢ ( 𝑦 = 𝑥 → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) = ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) |
68 |
67
|
breq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ↔ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) ) |
69 |
68
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
70 |
63 69
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
71 |
70
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
72 |
71
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
73 |
|
equequ2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑘 = 𝑖 ↔ 𝑘 = 𝑗 ) ) |
74 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑦 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑗 ) ) |
75 |
73 74
|
ifbieq1d |
⊢ ( 𝑖 = 𝑗 → if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) = if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) |
76 |
75
|
mpteq2dv |
⊢ ( 𝑖 = 𝑗 → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) |
77 |
76
|
cbvmptv |
⊢ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) = ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) |
78 |
62
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑦 ‘ 𝑗 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
79 |
77 78
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
80 |
2 11 12 15 15 19 27 34 72 79
|
gsumdixp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝑃 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
81 |
80
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
82 |
|
ringcmn |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) |
83 |
18 82
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ CMnd ) |
85 |
|
crngring |
⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) |
86 |
8 85
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ Ring ) |
88 |
|
ringmnd |
⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Mnd ) |
89 |
87 88
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ Mnd ) |
90 |
14 14
|
xpex |
⊢ ( 𝐷 × 𝐷 ) ∈ V |
91 |
90
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐷 × 𝐷 ) ∈ V ) |
92 |
|
ghmmhm |
⊢ ( 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) → 𝐸 ∈ ( 𝑃 MndHom 𝑆 ) ) |
93 |
9 92
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑃 MndHom 𝑆 ) ) |
94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐸 ∈ ( 𝑃 MndHom 𝑆 ) ) |
95 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝑃 ∈ Ring ) |
96 |
27
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ 𝐵 ) |
97 |
34
|
adantrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ 𝐵 ) |
98 |
2 11
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ 𝐵 ∧ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ 𝐵 ) |
99 |
95 96 97 98
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ 𝐵 ) |
100 |
99
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑗 ∈ 𝐷 ∀ 𝑖 ∈ 𝐷 ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ 𝐵 ) |
101 |
|
eqid |
⊢ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) |
102 |
101
|
fmpo |
⊢ ( ∀ 𝑗 ∈ 𝐷 ∀ 𝑖 ∈ 𝐷 ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ 𝐵 ↔ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) : ( 𝐷 × 𝐷 ) ⟶ 𝐵 ) |
103 |
100 102
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) : ( 𝐷 × 𝐷 ) ⟶ 𝐵 ) |
104 |
14 14
|
mpoex |
⊢ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V |
105 |
101
|
mpofun |
⊢ Fun ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) |
106 |
104 105 37
|
3pm3.2i |
⊢ ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) |
107 |
106
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ) |
108 |
72
|
fsuppimpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ) |
109 |
79
|
fsuppimpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ) |
110 |
|
xpfi |
⊢ ( ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ∧ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ) → ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ∈ Fin ) |
111 |
108 109 110
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ∈ Fin ) |
112 |
2 12 11 19 27 34 15 15
|
evlslem4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ) |
113 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑃 ) ∈ V ) ∧ ( ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ∈ Fin ∧ ( ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) × ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
114 |
107 111 112 113
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
115 |
2 12 84 89 91 94 103 114
|
gsummhm |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
116 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝐼 ∈ 𝑊 ) |
117 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝑅 ∈ CRing ) |
118 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
119 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝑗 ∈ 𝐷 ) |
120 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → 𝑖 ∈ 𝐷 ) |
121 |
25
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝑥 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
122 |
32
|
adantrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝑦 ‘ 𝑖 ) ∈ ( Base ‘ 𝑅 ) ) |
123 |
1 5 4 20 116 117 11 118 119 120 121 122
|
mplmon2mul |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑗 ∘f + 𝑖 ) , ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) , 0 ) ) ) |
124 |
123
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑗 ∘f + 𝑖 ) , ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) , 0 ) ) ) ) |
125 |
10
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑗 ∘f + 𝑖 ) , ( ( 𝑥 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑖 ) ) , 0 ) ) ) = ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
126 |
124 125
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) ) → ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
127 |
126
|
3impb |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷 ) → ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
128 |
127
|
mpoeq3dva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
129 |
128
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
130 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
131 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
132 |
2 131
|
ghmf |
⊢ ( 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) → 𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
133 |
9 132
|
syl |
⊢ ( 𝜑 → 𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
134 |
133
|
feqmptd |
⊢ ( 𝜑 → 𝐸 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐸 ‘ 𝑧 ) ) ) |
135 |
134
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐸 = ( 𝑧 ∈ 𝐵 ↦ ( 𝐸 ‘ 𝑧 ) ) ) |
136 |
|
fveq2 |
⊢ ( 𝑧 = ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) → ( 𝐸 ‘ 𝑧 ) = ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
137 |
99 130 135 136
|
fmpoco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
138 |
137
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
139 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) = ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) |
140 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) → ( 𝐸 ‘ 𝑧 ) = ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) |
141 |
27 139 135 140
|
fmptco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) = ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) |
142 |
141
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) ) |
143 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) = ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) |
144 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) → ( 𝐸 ‘ 𝑧 ) = ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) |
145 |
34 143 135 144
|
fmptco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) = ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
146 |
145
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝑆 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
147 |
142 146
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( ( 𝑆 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
148 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
149 |
133
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → 𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
150 |
149 27
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑗 ∈ 𝐷 ) → ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
151 |
133
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → 𝐸 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
152 |
151 34
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑖 ∈ 𝐷 ) → ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ∈ ( Base ‘ 𝑆 ) ) |
153 |
14
|
mptex |
⊢ ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∈ V |
154 |
|
funmpt |
⊢ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) |
155 |
|
fvex |
⊢ ( 0g ‘ 𝑆 ) ∈ V |
156 |
153 154 155
|
3pm3.2i |
⊢ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) |
157 |
156
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) ) |
158 |
|
ssidd |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
159 |
12 148
|
ghmid |
⊢ ( 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) → ( 𝐸 ‘ ( 0g ‘ 𝑃 ) ) = ( 0g ‘ 𝑆 ) ) |
160 |
9 159
|
syl |
⊢ ( 𝜑 → ( 𝐸 ‘ ( 0g ‘ 𝑃 ) ) = ( 0g ‘ 𝑆 ) ) |
161 |
14
|
mptex |
⊢ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ V |
162 |
161
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ∈ V ) |
163 |
37
|
a1i |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ V ) |
164 |
158 160 162 163
|
suppssfv |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
165 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
166 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) ∧ ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ∧ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
167 |
157 108 165 166
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
168 |
14
|
mptex |
⊢ ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V |
169 |
|
funmpt |
⊢ Fun ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) |
170 |
168 169 155
|
3pm3.2i |
⊢ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) |
171 |
170
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) ) |
172 |
|
ssidd |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ⊆ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
173 |
14
|
mptex |
⊢ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ V |
174 |
173
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐷 ) → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ∈ V ) |
175 |
172 160 174 163
|
suppssfv |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
176 |
175
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) |
177 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∈ V ∧ Fun ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ∧ ( 0g ‘ 𝑆 ) ∈ V ) ∧ ( ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ∈ Fin ∧ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ ( ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) supp ( 0g ‘ 𝑃 ) ) ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
178 |
171 109 176 177
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
179 |
131 3 148 15 15 87 150 152 167 178
|
gsumdixp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑆 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
180 |
147 179
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) · ( 𝐸 ‘ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
181 |
129 138 180
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 , 𝑖 ∈ 𝐷 ↦ ( ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
182 |
81 115 181
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) = ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
183 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑊 ) |
184 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
185 |
1 5 4 2 183 184 23
|
mplcoe4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 = ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) |
186 |
1 5 4 2 183 184 30
|
mplcoe4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 = ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) |
187 |
185 186
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) = ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
188 |
187
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( 𝐸 ‘ ( ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ( .r ‘ 𝑃 ) ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
189 |
185
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑥 ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) ) |
190 |
27
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) : 𝐷 ⟶ 𝐵 ) |
191 |
2 12 84 89 15 94 190 72
|
gsummhm |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) ) |
192 |
189 191
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑥 ) = ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) ) |
193 |
186
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
194 |
34
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) : 𝐷 ⟶ 𝐵 ) |
195 |
2 12 84 89 15 94 194 79
|
gsummhm |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) = ( 𝐸 ‘ ( 𝑃 Σg ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
196 |
193 195
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) |
197 |
192 196
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐸 ‘ 𝑥 ) · ( 𝐸 ‘ 𝑦 ) ) = ( ( 𝑆 Σg ( 𝐸 ∘ ( 𝑗 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑗 , ( 𝑥 ‘ 𝑗 ) , 0 ) ) ) ) ) · ( 𝑆 Σg ( 𝐸 ∘ ( 𝑖 ∈ 𝐷 ↦ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = 𝑖 , ( 𝑦 ‘ 𝑖 ) , 0 ) ) ) ) ) ) ) |
198 |
182 188 197
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐸 ‘ 𝑥 ) · ( 𝐸 ‘ 𝑦 ) ) ) |